Nests

Model
Digital Document
Publisher
Florida Atlantic University
Description
The goal of this study was to determine if hatching synchrony occurs in loggerhead sea turtle nests and if it does, what mechanism(s) promote that synchrony. Synchrony may occur because oviposition takes place during a single evening, and because incubation temperatures within the nest show relatively little variation; thus, rates of embryonic development among the eggs are similar ("temporal synchrony hypothesis"). Alternatively, synchrony might be enhanced through embryo-to-embryo communication that stimulates and synchronizes development ("coordinated hatching hypothesis"). Experiments were designed to distinguish between these two hypotheses. I found that if only a few embryos survive, temporal synchrony occurs. However, if many embryos survive, the duration of incubation and hatching shortens, presumably because embryonic movements inside soft-shelled eggs are detected by and transmitted between eggs and stimulate development, expediting hatching synchrony.
Model
Digital Document
Publisher
Florida Atlantic University
Description
South Florida's loggerhead (Caretta caretta), green (Chelonia mydas) and leatherback (Dermochelys coriacea) sea turtles hatchling have environmentally determined sex. The in situ nest mean hatchling sex ratios (SR) were highly female-biased : loggerhead F=0.89) and green turtle F=0.81; leatherback's SR was nearly balanced (0.55F). Nest temperatures and SRs differed between leatherbacks and loggerhead and green turtles. The latter two did not differ. The loggerhead response parameters were estimated within biological limitations by both 50-65% of incubation and mean middle 1/3 temperature. The maximum middle 1/3 temperature was the best-fit predictor for green turtles. No best-fit sex ratio-temperature response could be identified for leatherbacks. Clutches incubating under natural conditions can vary greatly in SR ; TRT differences may account for differences among species' sex ratios.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The photopollution of beaches caused by artificial light sources can interfere with sea turtle hatchlings' ability to orient properly towards the sea. Exhaustion due to extended disorientation crawling may then increase hatchling mortality. This study evaluated the energetic consequences of long-distance crawls in green and loggerhead sea turtle hatchlings. Turtles crawled for 200 m or 500 m on a treadmill, followed by a 30 minute evaluation of swim performance. Metabolic activity was quantified via measures of blood glucose, blood lactate, and oxygen consumption. No significant changes in metabolism resulted from long-distance crawling activity in loggerheads ; however, loggerheads rested for extended periods of time during the crawl trials, often unresponsive to stimuli. This behavior implies that loggerhead hatchlings would be vulnerable to predation or temperature stress due to exhaustion from extended periods of crawling. Further data is required to draw any significant conclusions about long-term disorientatin crawling in green hatchlings.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Nest predation can significantly reduce hatchling recruitment in sea turtle populations. This study uses 20 years of data from Canaveral National Seashore, Florida, which has pristine and altered beaches. Chi-square tests were used to determine if secondary predation events were related to the nest's primary depredation event. To determine if human beach use and nest predation are spatially or temporally linked, we ranked human beach use and examined predation frequency across all screened and marked nests (n=40,441). Lastly, I quantified nest predation risk spatially and temporally. I found that primary predation increases the chance of a nest suffering subsequent predation. Primary and multiple predation events occurred with greater frequency in limited use areas and with lowest frequency in moderate use areas. Predation risk decreased by an average of 29.5% from 2000-2008. Nests deposited midseason were 9.8% more likely to be predated than nests deposited early or late.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The pyramid ant, Dorymyrmex bureni, is one of the most common and conspicuous ants of open, sandy habitats in the southeastern US. To examine the architecture of D. bureni nests in different habitats, I made wax casts of the subterranean tunnels and chambers of nests in a disturbed college campus site (n=3) and a relatively undisturbed greenway preserve site (n=5). Nests of pyramid ant, Dorymyrmex bureni, consist of two basic units : horizontal chambers and descending shafts connecting them. Chambers near the surface are tunnel-like with branches arranged in a nexus, while deeper chambers were more compact in outline. Chamber height is more or less constant, but chamber shape becomes more complex and lobed in characteristic ways as chambers enlarge. Nests have a top-heavy distribution of chamber area at all sizes because chambers are larger and closer together in the upper nest regions.