St. Lucie River Estuary

Model
Digital Document
Publisher
Florida Atlantic University
Description
Oyster reefs support diverse estuarine communities and food webs. Factors controlling oyster reef community development were studied on restored reefs in the St. Lucie Estuary. Freshwater discharges create stresses that cause oyster mortality, habitat loss and reduction in reef community diversity. Using structural equation modeling, it was demonstrated that salinity, turbidity, and chlorophyll-a gradients influence oysters and some reef invertebrate species, but did not support the predictions of the Intermediate Disturbance Hypothesis. In contrast, diversity and species richness were greatest at low stress sites. A field experiment showed that topographic relief and architectural complexity enhanced colonization and growth of reef-building species (e.g.oysters and mussels). The relief by complexity interaction had a higher order, synergistic effect on oyster abundance. When considered separately, increasing relief further enhanced dominant sessile taxa (cirripeds and ascideans) ; while, increasing complexity supported greater species richness and the abundance of cirripeds.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Oyster reefs are biodiverse communities that provide many ecological and commercial benefits. However, oyster reefs have declined around the world from human activities. Oyster reef restoration programs have begun to limit some of the decline, but the need for determining the success of a program has been problematic. Passive acoustic techniques can use naturally occurring sounds produced by organisms to assess biodiversity. Passive acoustics was utilized to compare the sounds in natural and restored oyster reefs, with special attention on snapping shrimp (Alpheus spp.) snap sounds, in the St. Lucie Estuary, Florida over a one year period. Season, estuary region, habitat and day period had an effect on sound production. Passive acoustic monitoring of snapping shrimp sound production may be a useful non-destructive technique for monitoring the progress of oyster reef restoration projects once further correlations are established between environmental effects and sound production.