Transportation planning

Model
Digital Document
Publisher
Florida Atlantic University
Description
Catastrophic events in the past revealed the need for more research in the field of emergency evacuation. During such a procedure, different problems such as congestion at the related traffic networks because of the large number of the evacuating vehicles can occur. Current best practices, in order to deal with such problems, suggest the further involvement of buses in evacuation operations. On the first part of this study after the accurate development of the related simulation model, the optimization of a selected bus system characteristics focusing on the vehicle routing parameter will follow through the development and the application of a non-linear cost minimization problem. On the second part, the potential use of the regular-everyday bus routes in a no-notice emergency evacuation in order to save time comparing to the time needed so as to assign the actual evacuation routes to the evacuation bus vehicles will be analyzed.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The demand on transportation infrastructure is dramatically increasing due to population growth causing the transportation systems to be pushed to their limits. With the projected population growth, not only for the U.S. but especially for the higher education field, university campuses are of great importance for transportation engineers. Urban univeristy campuses are considered major trip generators and with the population forecast many challenges are bound to arise. The implementation of an improved transit system provides a lower-cost solution to the continuously increasing congestion problems in university campus road networks and surrounding areas. This paper presents a methodology focused on the development of a hybrid system concentrated in three main aspects of transit functionality : access to bus stop location, reasonable travel time and low cost. Two methods for bus stop locations assessment are presented for two levels of analysis : microscopic and mesoscopic. The resulting travel time from the improved bus stop locations is analyzed and compared to the initial conditions by using a microsimulation platform. The development of a mathematical model targets the overall system's cost minimization, including user and operator cost, while maximizing the service coverage. The results demonstrate the benefits of the bus stop assessment by the two applied methods, as well as, the benefits of the route and headway selection based on the mathematical model. Moreover, the results indicate that the generation of routes using travel time as the impedance factor generates the optimal possible routes to obtain the minimum system's overall cost.