Turtles

Model
Digital Document
Publisher
Florida Atlantic University
Description
The uncontrolled release of glutamate is thought to be a key event in the death of the anoxic/ischemic mammalian brain. However the origin of glutamate, vesicular and/or cytoplasmic, is unknown. Likewise, the anoxic turtle releases a surge of glutamate upon anoxic depolarization. Therefore, this study investigated the origin of glutamate release in the isolated cerebellum of the freshwater turtle (Trachemys scripta). The results showed that: during anoxia, low extracellular glutamate levels are maintained, an ability lost during in vitro ischemia, by a reduction in glutamate release. Upon anoxic depolarization glutamate release originates from the cytoplasm. The lack of vesicular glutamate release is likely the result of an inhibition of vesicular exocytosis. However during in vitro ischemia, the inhibitory signal which blocks vesicular glutamate release during anoxia is lost. This allows a biphasic pattern of glutamate release during ischemia originating initially from vesicular stores which then causes cytoplasmic glutamate release.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The enzyme Methionine sulfoxide reductase A (MsrA) repairs oxidized proteins, and may act as a scavenger of reactive oxygen species (ROS), making it a potential therapeutic target for age-related neurodegenerative diseases. The anoxia-tolerant turtle offers a unique model to observe the effects of oxidative stress on a system that maintains neuronal function following anoxia and reoxygenation, and that ages without senescence. MsrA is present in both the mitochondria and cytosol, with protein levels increasing respectively 3- and 4-fold over 4 hours of anoxia, and remaining 2-fold higher than basal upon reoxygenation. MsrA was knocked down in neuronally-enriched cell cultures via RNAi transfection. Propidium iodide staining showed no significant cell death during anoxia, but this increased 7-fold upon reoxygenation, suggesting a role for MsrA in ROS suppression during reperfusion. This is the first report in any system of MsrA transcript and protein levels being regulated by oxygen levels.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Mammalian neurons exhibit extreme sensitivity to oxygen deprivation and undergo rapid and irreversible degeneration when oxygen supply is curtailed. Though several neuroprotective pathways are activated during oxygen deprivation, their analyses are masked by the complex series of pathological events which are triggered simultaneously. Such events can be analyzed in the anoxia tolerant fresh water turtle, which can inherently survive the conditions of oxygen deprivation and post-anoxic reoxygenation without brain damage. It is likely in such a model that modulation of a particular molecular pathway is adaptive rather than pathological. The major objective behind this study was to analyze the intracellular signaling pathways mediating the protective effects of adenosine, a potential neuromodulator, and its effect on cell survival by influencing the key prosurvival proteins that prevent apoptosis. In vivo and in vitro studies have shown that adenosine acts as a neuroprotective metabolite and its action can be duplicated or abrogated using specific agonist and antagonists. Stimulating the adenosine receptors using selective A1 receptor agonist N6-cyclopentyladenosine (CPA) activated the presumed prosurvival ERK and P13-K/AKT cascade promoting cell survival, and suppression of the receptor using the selective antagonist DPCPX (8- cyclopentyl-1,3-dipropylxanthine) activated the prodeath JNK and P38 pathways. The complex regulation of the MAPK's/AKT signaling cascades was also analyzed using their specific inhibitors. The inhibiton of the ERK and AKT pathway increased cell death, indicating a prosurvival role, whereas inhibiton of the JNK and p38 pathway increased cell survival in this model. In vitro studies have also shown a high Bcl-2/BAX ratio during anoxia and reoxygenation, indicating a strong resistance to cell death via apoptosis.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Cardiac ischemia, stroke and some neurodegenerative disorders are all characterized by cell damage and death due to low oxygen levels. Comparative studies show that anoxia tolerant model systems present a unique opportunity to study "survival" instead of death in the complete absence of oxygen. The freshwater turtle (Trachemys scripta elegans) is unique in its ability to survive total oxygen deprivation for hours to days, as well as reoxygenation insult after anoxia. The broad objective of this study is to understand the modulation of key molecular mechanisms involving stress proteins and VEGF that offer neuroprotection and enhance cell survival in the freshwater turtle through anoxia and reoxygenation. In vivo analyses have shown that anoxia induced stress proteins (Hsp72, Hsp60, Grp94, Hsp60, Hsp27, HO-1); modest changes in the Bcl2/Bax ratio and no change in cleaved caspase-3 expression suggesting resistance to neuronal damage. These results were corroborated with immunohistochemical evidence indicating no damage in turtle brain when subjected to the stress of anoxia and A/R. To understand the functional role of Hsp72, siRNA against Hsp72 was utilized to knockdown Hsp72 in vitro (neuronally enriched primary cell cultures established from the turtle). Knockdown cultures were characterized by increased cell death associated with elevated ROS levels. Silencing of Hsp72 knocks down the expression of Bcl2 and increases the expression of Bax, thereby decreasing the Bcl2/Bax ratio. However, there was no increase in cytosolic Cytochrome c or the expression levels of cleaved Caspase-3. Significant increase in AIF was observed in the knockdown cultures that increase through anoxia and reoxygenation, suggesting a caspase independent pathway of cell death.