Oxygen

Model
Digital Document
Publisher
Florida Atlantic University
Description
The enzyme Methionine sulfoxide reductase A (MsrA) repairs oxidized proteins, and may act as a scavenger of reactive oxygen species (ROS), making it a potential therapeutic target for age-related neurodegenerative diseases. The anoxia-tolerant turtle offers a unique model to observe the effects of oxidative stress on a system that maintains neuronal function following anoxia and reoxygenation, and that ages without senescence. MsrA is present in both the mitochondria and cytosol, with protein levels increasing respectively 3- and 4-fold over 4 hours of anoxia, and remaining 2-fold higher than basal upon reoxygenation. MsrA was knocked down in neuronally-enriched cell cultures via RNAi transfection. Propidium iodide staining showed no significant cell death during anoxia, but this increased 7-fold upon reoxygenation, suggesting a role for MsrA in ROS suppression during reperfusion. This is the first report in any system of MsrA transcript and protein levels being regulated by oxygen levels.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Cardiac ischemia, stroke and some neurodegenerative disorders are all characterized by cell damage and death due to low oxygen levels. Comparative studies show that anoxia tolerant model systems present a unique opportunity to study "survival" instead of death in the complete absence of oxygen. The freshwater turtle (Trachemys scripta elegans) is unique in its ability to survive total oxygen deprivation for hours to days, as well as reoxygenation insult after anoxia. The broad objective of this study is to understand the modulation of key molecular mechanisms involving stress proteins and VEGF that offer neuroprotection and enhance cell survival in the freshwater turtle through anoxia and reoxygenation. In vivo analyses have shown that anoxia induced stress proteins (Hsp72, Hsp60, Grp94, Hsp60, Hsp27, HO-1); modest changes in the Bcl2/Bax ratio and no change in cleaved caspase-3 expression suggesting resistance to neuronal damage. These results were corroborated with immunohistochemical evidence indicating no damage in turtle brain when subjected to the stress of anoxia and A/R. To understand the functional role of Hsp72, siRNA against Hsp72 was utilized to knockdown Hsp72 in vitro (neuronally enriched primary cell cultures established from the turtle). Knockdown cultures were characterized by increased cell death associated with elevated ROS levels. Silencing of Hsp72 knocks down the expression of Bcl2 and increases the expression of Bax, thereby decreasing the Bcl2/Bax ratio. However, there was no increase in cytosolic Cytochrome c or the expression levels of cleaved Caspase-3. Significant increase in AIF was observed in the knockdown cultures that increase through anoxia and reoxygenation, suggesting a caspase independent pathway of cell death.