Time-series analysis

Model
Digital Document
Publisher
Florida Atlantic University
Description
Financial time-series data are noisy, volatile, and nonlinear. The classic statistical linear models may not capture those underlying structures of the data. The rapid advancement in artificial intelligence and machine learning techniques, availability of large-scale data, and increased computational capabilities of a machine opens the door to developing sophisticated deep learning models to capture the nonlinearity and hidden information in the data. Creating a robust model by unlocking the power of a deep neural network and using real-time data is essential in this tech era. This study constructs a new computational framework to uncover the information in the financial time-series data and better inform the related parties. It carries out the comparative analysis of the performance of the deep learning models on stock price prediction with a well-balanced set of factors from fundamental data, macroeconomic data, and technical indicators responsible for stock price movement. We further build a novel computational framework through a merger of recurrent neural networks and random compression for the time-series analysis. The performance of the model is tested on a benchmark anomaly time-series dataset. This new computational framework in a compressed paradigm leads to improved computational efficiency and data privacy. Finally, this study develops a custom trading simulator and an agent-based hybrid model by combining gradient and gradient-free optimization methods. In particular, we explore the use of simulated annealing with stochastic gradient descent. The model trains a population of agents to predict appropriate trading behaviors such as buy, hold, or sell by optimizing the portfolio returns. Experimental results on S&P 500 index show that the proposed model outperforms the baseline models.
Model
Digital Document
Publisher
Florida Atlantic University
Description
In this thesis we present an intelligent forecaster based on neural network technology to capture the future path of the market indicator. This thesis is about the development of a new methodology in financial forecasting. An effort is made to develop a neural network forecaster using the financial indicators as the input variables. A complex recurrent neural network is used to capture the behavior of the nonlinear characteristics of the S&P 500. The main outcome of this research is, a systematic way of constructing a forecaster for nonlinear and non-stationary data series of S&P 500 that leads to very good out-of-sample prediction. The results of the training and testing of the network are presented along with conclusion. The tool used for the validation of this research is "Brainmaker". This thesis also contains a brief survey of available tools for financial forecasting.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The goal of time series forecasting is to identify the underlying pattern and use these patterns to predict the future path of the series. To capture the future path of a dynamic stock market variable is one of the toughest challenges. This thesis is about the development of a new methodology in financial forecasting. An effort is made to develop a neural network forecaster using time-series phenomena. The main outcome of this new approach for financial forecasting is a systematic way of constructing a Neural Network Forecaster for nonlinear and non-stationary time-series data that leads to very good out-of-sample prediction. The tool used for the validation of this research is "Brainmaker". This thesis also contains a small survey of available tools used for financial forecasting.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis uses time series analysis to construct
models of income and consumption in the United States
between 1947 and 1983. The data are quarterly observations
on three measures of income and two of consumption. The
study begins with a survey of univariate and multivariate
model building techniques. With the life cycle - permanent
income hypothesis as a foundation, theoretical models of
income and consumption are discussed. These models are then
fit to the data and examined. Tests for causality are also
covered in order to determine the manner in which the two
processes are related in a multivariate model.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis is a study of time series modeling techniques
applied to the relationship between the rate of inflation and
unemployment. The data used in this study are quarterly for
the United States from 1948 - 1981. The study begins by reviewing
the major theories of inflation and unemployment.
Univariate stochastic time series methods are introduced and
applied to the above-mentioned relationship. Multivariate
stochastic time series methods are then fit to a series of
related variables to investigate the validity of the lag
structures employed on the relationship between inflation
and unemployment.
Model
Digital Document
Publisher
Florida Atlantic University
Description
In this thesis, application of GMDH Algorithm to real life problems is studied. A particular type of GMDH Algorithm namely TMNN is chosen for this purpose. An effort is made to forecast S&P Index Closing Value with the help of the forecaster. The performance of the TMNN Algorithm is simulated by implementing a tool in C++ for developing forecast models. The validation of this simulation tool is carried out with Sine Wave Values and performance analysis is done in a noisy environment. The noisy environment tests the TMNN forecaster for its robustness. The primary goal of this research is to develop a simulation software based on TMNN Algorithm for forecasting stock market index values. The main inputs are previous day's closing values and the output is predicted closing index.