Model
Digital Document
Publisher
Florida Atlantic University
Description
Vision is a critical sense for many species, with the perception of motion being a fundamental aspect. This aspect often provides richer information than static images for understanding the environment. Motion recognition is a relatively simple computation compared to shape recognition. Many creatures can discriminate moving objects quite well while having virtually no capacity for recognizing stationary objects.
Traditional methods for collision-free navigation require the reconstruction of a 3D model of the environment before planning an action. These methods face numerous limitations as they are computationally expensive and struggle to scale in unstructured and dynamic environments with a multitude of moving objects.
This thesis proposes a more scalable and efficient alternative approach without 3D reconstruction. We focus on visual motion cues, specifically ’visual looming’, the relative expansion of objects on an image sensor. This concept allows for the perception of collision threats and facilitates collision-free navigation in any environment, structured or unstructured, regardless of the vehicle’s movement or the number of moving objects present.
Traditional methods for collision-free navigation require the reconstruction of a 3D model of the environment before planning an action. These methods face numerous limitations as they are computationally expensive and struggle to scale in unstructured and dynamic environments with a multitude of moving objects.
This thesis proposes a more scalable and efficient alternative approach without 3D reconstruction. We focus on visual motion cues, specifically ’visual looming’, the relative expansion of objects on an image sensor. This concept allows for the perception of collision threats and facilitates collision-free navigation in any environment, structured or unstructured, regardless of the vehicle’s movement or the number of moving objects present.
Member of