Spatial analysis (Statistics)

Model
Digital Document
Publisher
Florida Atlantic University
Description
Deterministic and stochastic weighting methods are commonly used methods for estimating missing precipitation rain gauge data based on values recorded at neighboring gauges. However, these spatial interpolation methods seldom check for their ability to preserve site and regional statistics. Such statistics and primarily defined by spatial correlations and other site-to-site statistics in a region. Preservation of site and regional statistics represents a means of assessing the validity of missing precipitation estimates at a site. This study evaluates the efficacy of traditional interpolation methods for estimation of missing data in preserving site and regional statistics. New optimal spatial interpolation methods intended to preserve these statistics are also proposed and evaluated in this study. Rain gauge sites in the state of Kentucky are used as a case study, and several error and performance measures are used to evaluate the trade-offs in accuracy of estimation and preservation of site and regional statistics.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Fine-scale urban land cover information is important for a number of applications, including urban tree canopy mapping, green space analysis, and urban hydrologic modeling. Land cover information has traditionally been extracted from satellite or aerial images using automated image classification techniques, which classify pixels into different categories of land cover based on their spectral characteristics. However, in fine spatial resolution images (4 meters or better), the high degree of within-class spectral variability and between-class spectral similarity of many types of land cover leads to low classification accuracy when pixel-based, purely spectral classification techniques are used. Object-based classification methods, which involve segmenting an image into relatively homogeneous regions (i.e. image segments) prior to classification, have been shown to increase classification accuracy by incorporating the spectral (e.g. mean, standard deviation) and non-spectral (e.g. te xture, size, shape) information of image segments for classification. One difficulty with the object-based method, however, is that a segmentation parameter (or set of parameters), which determines the average size of segments (i.e. the segmentation scale), is difficult to choose. Some studies use one segmentation scale to segment and classify all types of land cover, while others use multiple scales due to the fact that different types of land cover typically vary in size. In this dissertation, two multi-scale object-based classification methods were developed and tested for classifying high resolution images of Deerfield Beach, FL and Houston, TX. These multi-scale methods achieved higher overall classification accuracies and Kappa coefficients than single-scale object-based classification methods.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis develops methodologies for continuous estimation of hydrological variables which infill missing daily rainfall data and the forecast of weekly streamflows from a watershed. Several mathematical programming formulations were developed and used to estimate missing historical rainfall data. Functional relationships were created between radar precipitation and known rain gauge data then are used to estimate the missing data. Streamflow predictions models require highly non-linear mathematical models to capture the complex physical characteristics of a watershed. An artificial neural network model was developed for streamflow prediction. There are no set methods of creating a neural network and the selection of architecture and inputs to a neural network affects the performance. This thesis addresses this issue with automated input and network architecture selection through optimization. MATLABÂȘ scripts are developed and used to test many combinations and select a model through optimization.