THE EFFECT OF LANE CHANGE VOLATILITY ON REAL TIME ACCIDENT PREDICTION

File
Publisher
Florida Atlantic University
Date Issued
2019
EDTF Date Created
2019
Description
According to a March 2019 publication by the National Highway Transportation Safety Administration(NHTSA), 62% of all police-reported accidents in the United States between 2011 and 2015 could have been prevented or mitigated with the use of five groups of collision avoidance technologies in passenger vehicles: (1) forward collision prevention, (2) lane keeping, (3) blind zone detection, (4) forward pedestrian impact, and (5) backing collision avoidance. These technologies work mostly by reducing or removing the risks involved in a lane change maneuver; yet, the Broward transportation management system does not directly address these risk. Therefore, we are proposing a Machine Learning based approach to real-time accident prediction for Broward I-95 using the C5.1 Decision Tree and the Multi-Layer Perceptron Neural Network to address them. To do this, we design a new measure of volatility, Lane Change Volatility(LCV), which measures the potential for a lane change in a segment of the highway. Our research found that LCV is an important predictor of accidents in an exit zone and when considered in tandem with current system variable, such as lighting conditions, the machine learning classifiers are able to predict accidents in the exit zone with an accuracy rate of over 98%.
Note

Includes bibliography.

Language
Type
Extent
66 p.
Identifier
FA00013420
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Thesis (M.S.)--Florida Atlantic University, 2019.
FAU Electronic Theses and Dissertations Collection
Date Backup
2019
Date Created Backup
2019
Date Text
2019
Date Created (EDTF)
2019
Date Issued (EDTF)
2019
Extension


FAU

IID
FA00013420
Person Preferred Name

Tesheira, Hamilton

author

Graduate College
Physical Description

application/pdf
66 p.
Title Plain
THE EFFECT OF LANE CHANGE VOLATILITY ON REAL TIME ACCIDENT PREDICTION
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2019
2019
Florida Atlantic University

Boca Raton, Fla.

Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
THE EFFECT OF LANE CHANGE VOLATILITY ON REAL TIME ACCIDENT PREDICTION
Other Title Info

THE EFFECT OF LANE CHANGE VOLATILITY ON REAL TIME ACCIDENT PREDICTION