Traffic accidents

Model
Digital Document
Publisher
Florida Atlantic University
Description
In recent years, Florida State recorded thousands of abnormal traffic flows on highways that were caused by traffic incidents. Highway traffic congestion costed the US economy 101 billion dollars in 2020. Therefore, it is imperative to develop effective real-time traffic flow prediction schemes to mitigate the impact of traffic congestion. In this dissertation, we utilized real-life highway segment-based traffic and incident data obtained from Florida Department of Transportation (FDOT) for real-time incident prediction.
We used eight years of FDOT real-life traffic and incident data for Florida I-95 highway to build prediction models for traffic accident severity. Accurate severity prediction is beneficial for responders since it allows the emergency center to dispatch the right number of vehicles without wasting additional resources.
Model
Digital Document
Publisher
Florida Atlantic University
Description
According to a March 2019 publication by the National Highway Transportation Safety Administration(NHTSA), 62% of all police-reported accidents in the United States between 2011 and 2015 could have been prevented or mitigated with the use of five groups of collision avoidance technologies in passenger vehicles: (1) forward collision prevention, (2) lane keeping, (3) blind zone detection, (4) forward pedestrian impact, and (5) backing collision avoidance. These technologies work mostly by reducing or removing the risks involved in a lane change maneuver; yet, the Broward transportation management system does not directly address these risk. Therefore, we are proposing a Machine Learning based approach to real-time accident prediction for Broward I-95 using the C5.1 Decision Tree and the Multi-Layer Perceptron Neural Network to address them. To do this, we design a new measure of volatility, Lane Change Volatility(LCV), which measures the potential for a lane change in a segment of the highway. Our research found that LCV is an important predictor of accidents in an exit zone and when considered in tandem with current system variable, such as lighting conditions, the machine learning classifiers are able to predict accidents in the exit zone with an accuracy rate of over 98%.