DEEP LEARNING BASED ANOMALY DETECTION IN SPACE SYSTEMS AND OPERATIONS

File
Publisher
Florida Atlantic University
Date Issued
2024
EDTF Date Created
2024
Description
The relentless expansion of space exploration necessitates the development of robust and dependable anomaly detection systems (ADS) to safeguard the safety and efficacy of space missions. Conventional anomaly detection methods often falter in the face of the intricate and nuanced dynamics of space systems, resulting in a proliferation of false positives and/or false negatives. In this study, we explore into cutting-edge techniques in deep learning (DL) to tackle the challenges inherent in ADS. This research offers an in-depth examination of recent breakthroughs and hurdles in deep learning-driven anomaly detection tailored specifically for space systems and operations. A key advantage of deep learning-based anomaly detection lies in its adaptability to the diverse data encountered in space missions. For instance, Convolutional Neural Networks (CNNs) excel at capturing spatial dependencies in high-dimensional data, rendering them well-suited for tasks such as satellite imagery analysis. Conversely, Recurrent Neural Networks (RNNs), with their temporal modeling prowess, excel in identifying anomalies in time-series data generated by spacecraft sensors. Despite the potential of deep learning, several challenges persist in its application to anomaly detection in space systems. The scarcity of labeled data presents a formidable hurdle, as acquiring labeled anomalies during space operations is often prohibitively expensive and impractical. Additionally, the interpretability of deep learning models remains a concern, particularly in mission-critical scenarios where human operators need to comprehend the rationale behind anomaly predictions.
Note

Includes bibliography.

Language
Type
Extent
154 p.
Identifier
FA00014390
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (PhD)--Florida Atlantic University, 2024.
FAU Electronic Theses and Dissertations Collection
Date Backup
2024
Date Created Backup
2024
Date Text
2024
Date Created (EDTF)
2024
Date Issued (EDTF)
2024
Extension


FAU

IID
FA00014390
Person Preferred Name

Akbarian, Hamid

author

Graduate College
Physical Description

application/pdf
154 p.
Title Plain
DEEP LEARNING BASED ANOMALY DETECTION IN SPACE SYSTEMS AND OPERATIONS
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2024
2024
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
DEEP LEARNING BASED ANOMALY DETECTION IN SPACE SYSTEMS AND OPERATIONS
Other Title Info

DEEP LEARNING BASED ANOMALY DETECTION IN SPACE SYSTEMS AND OPERATIONS