DEVELOPING AMINE-MODIFIED SILICA MATERIALS FOR CARBON DIOXIDE CAPTURE FROM DIFFERENT GAS STREAMS

File
Publisher
Florida Atlantic University
Date Issued
2024
EDTF Date Created
2024
Description
The atmospheric concentration of CO2 increased from 320 to 425 parts per million by volume (ppmv; 0.0425 vol.%) between 1960 and 2024. Sample CO2 reduction strategies include shifting to renewable energy sources and employing CO2 capture. CO2 capture from the air (also known as direct air capture; DAC) has recently received increased attention. CO2 has the potential to act as an asphyxiant at high concentrations, particularly in enclosed environments (e.g., spacecraft, submarines), requiring air revitalization to remove CO2. Hence, the U.S. Occupational Safety and Health Administration determined a permissible exposure limit of 5,000 ppmv CO2 (0.5 vol.%) throughout an 8-hour work shift. Considering the trace levels of CO2 and the presence of humidity in DAC and air revitalization applications, similar materials can be developed for implementation in both cases. CO2 capture involving amine-functionalized silica materials (“aminosilicas”) can achieve high CO2 uptakes at low concentrations due to high selectivity. Additionally, moisture in CO2-laden gases enhances the CO2 uptake and stability of aminosilicas. Therefore, this research investigated the potential of aminosilicas for removing CO2 from dilute streams, including DAC and air revitalization applications. Aminosilicas were produced using mesoporous silica supports with different particle sizes that were modified with tetraethylenepentamine (TEPA) or branched polyethylenimine (PEI) with different molecular weights (600, 1200, and 1800), or grafted with 3-aminopropyltrimethoxysilane (APTMS). The performance of aminosilicas was assessed to determine equilibrium CO2 adsorption capacity, adsorption kinetics, and cyclic stability.
Note

Includes bibliography.

Language
Type
Extent
178 p.
Identifier
FA00014479
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (PhD)--Florida Atlantic University, 2024.
FAU Electronic Theses and Dissertations Collection
Date Backup
2024
Date Created Backup
2024
Date Text
2024
Date Created (EDTF)
2024
Date Issued (EDTF)
2024
Extension


FAU

IID
FA00014479
Person Preferred Name

Ahmadian, Amirjavad Hosseini

author

Graduate College
Physical Description

application/pdf
178 p.
Title Plain
DEVELOPING AMINE-MODIFIED SILICA MATERIALS FOR CARBON DIOXIDE CAPTURE FROM DIFFERENT GAS STREAMS
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2024
2024
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
DEVELOPING AMINE-MODIFIED SILICA MATERIALS FOR CARBON DIOXIDE CAPTURE FROM DIFFERENT GAS STREAMS
Other Title Info

DEVELOPING AMINE-MODIFIED SILICA MATERIALS FOR CARBON DIOXIDE CAPTURE FROM DIFFERENT GAS STREAMS