Adsorption

Model
Digital Document
Publisher
Florida Atlantic University
Description
The atmospheric concentration of CO2 increased from 320 to 425 parts per million by volume (ppmv; 0.0425 vol.%) between 1960 and 2024. Sample CO2 reduction strategies include shifting to renewable energy sources and employing CO2 capture. CO2 capture from the air (also known as direct air capture; DAC) has recently received increased attention. CO2 has the potential to act as an asphyxiant at high concentrations, particularly in enclosed environments (e.g., spacecraft, submarines), requiring air revitalization to remove CO2. Hence, the U.S. Occupational Safety and Health Administration determined a permissible exposure limit of 5,000 ppmv CO2 (0.5 vol.%) throughout an 8-hour work shift. Considering the trace levels of CO2 and the presence of humidity in DAC and air revitalization applications, similar materials can be developed for implementation in both cases. CO2 capture involving amine-functionalized silica materials (“aminosilicas”) can achieve high CO2 uptakes at low concentrations due to high selectivity. Additionally, moisture in CO2-laden gases enhances the CO2 uptake and stability of aminosilicas. Therefore, this research investigated the potential of aminosilicas for removing CO2 from dilute streams, including DAC and air revitalization applications. Aminosilicas were produced using mesoporous silica supports with different particle sizes that were modified with tetraethylenepentamine (TEPA) or branched polyethylenimine (PEI) with different molecular weights (600, 1200, and 1800), or grafted with 3-aminopropyltrimethoxysilane (APTMS). The performance of aminosilicas was assessed to determine equilibrium CO2 adsorption capacity, adsorption kinetics, and cyclic stability.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The potential of paper waste-derived activated carbon was investigated for the removal of carbon dioxide and hydrogen sulfide from landfill gas. Activated carbon materials were prepared by carbonizing paper waste followed by acid treatment to remove ash, mixing with aqueous phase potassium hydroxide, and activation via microwave heating. Activated samples were tested using thermogravimetric analysis to determine their equilibrium uptake of carbon dioxide. The adsorbent materials were modified with both tetraethylenepentamine and diethanolamine to potentially increase the carbon dioxide uptake, however, all the modified samples had a performance significantly worse than their unmodified counterparts. Adsorbent screening was conducted in conditions mimicking that of landfill gas, namely temperature of 40 °C and 40% carbon dioxide in nitrogen. Performant samples were identified as those achieving uptakes greater than 3 wt.%. The best performing sample achieved an uptake of 5.03 wt.% and maintained 97% of its uptake during 100 successive adsorption-desorption cycles. Column-breakthrough experiments demonstrated that the final candidate achieved complete removal of both carbon dioxide and hydrogen sulfide, suggesting viability for larger scale landfill gas purification.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Human exposure to arsenic from natural as well as anthropogenic sources can lead to a detrimental impact to the nervous system, cardiovascular system and can also cause cancer. Historical agricultural runoff has led to an accumulation of arsenic in groundwater and soils around Lake Okeechobee and many golf courses in Florida. This research involved studying the removal of aqueous arsenic via adsorption using activated carbon derived from algae. Carbon derived from Sargassum removed 41.47% of arsenic after a contact time of 2 hours. Adsorbents created from blue-green algae showed essentially no arsenic removal under the same conditions. Various chemical additives were tested to improve arsenic adsorption as well. Modification of the adsorbent surface with magnesium chloride demonstrated an arsenic removal efficiency of 98.6% when added to commercial activated carbon. However, when magnesium chloride was used to modify the surface of Sargassum-derived carbon adsorbents, the arsenic removal efficiency after 2 hours was 26.7%. It is recommended to investigate other surface modification agents that can potentially improve adsorption of arsenic.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Exposure to high CO2 levels in enclosed environments may result in adverse health impacts. To provide a safe breathing environment, the exhaled gases must be removed. Currently, NASA uses a multi-bed system known as the Carbon Dioxide Removal Assembly (CDRA) for CO2 removal. The process involves cyclic adsorption-desorption using zeolite-5A molecular sieves. Owing to the presence of a wet gaseous mixture and the hydrophilic nature of zeolite-5A, the removal of CO2 and water vapor must be conducted in two separate vessels, resulting in additional costs. Therefore, the objective of this study was to integrate and intensify the process utilizing amine-grafted silica. Adsorbent performance was gauged on equilibrium CO2 uptake and kinetics, activation temperature, CO2 desorption temperature, and consecutive cycling in the presence of 1 vol.% CO2 in N2 at 25 °C. Aminosilica outperformed 5A and achieved similar equilibrium CO2 uptake while exhibiting faster kinetics, and lower desorption and regeneration temperature requirements.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Ultraviolet spectrophotometry was employed to investigate the adsorption of phenylphosphonic acid onto the surface of alumina from aqueous solution. It was found that an initial chemisorption occurred with monolayer coverage, reaching a maximum at a solution pH of 3.0. The results were interpreted as indicating that this and related adsorptions are controlled by ligand exchange processes involving electrostatic attraction between oppositely-charged species. In a separate project, high performance liquid chromatography was employed for the quantitative analysis of aminophylline in commercial thigh cream formulations. The analysis required derivatization of the compound by dansylation under carefully-controlled conditions. This enhanced its detection and separation from other cream components.