EMBEDDING LEARNING FOR COMPLEX DYNAMIC INFORMATION NETWORKS

File
Contributors
Publisher
Florida Atlantic University
Date Issued
2022
EDTF Date Created
2022
Description
With the rapid development of networking platforms and data intensive applications, networks (or graphs) are becoming convenient and fundamental tools to model the complex inter-dependence among big scale data. As a result, networks (or graphs) are being widely used in many applications, including citation networks [40], social media networks [71], and so on. However, the high complexity (containing many important information) as well as the dynamic nature of the network makes the graph learning task more difficult. To have better graph representations (capture both node content and graph structure), many research efforts have been made to develop reliable and efficient algorithms. Therefore, the good graph representation learning is the key factor in performing well on downstream tasks. The dissertation mainly focuses on the graph representation learning, which aims to embed both structure and node content information of graphs into a compact and low dimensional space for a new representation learning. More specifically, in order to achieve an efficient and robust graph representation, the following four problems will be studied from different perspectives: 1) We study the problem of positive unlabeled graph learning for network node classification, and present a new deep learning model as a solution; 2) We formulate a new open-world learning problem for graph data, and propose an uncertain node representation learning approach and sampling strategy to solve the problem; 3) For cross-domain graph learning, we present a novel unsupervised graph domain adaptation problem, and propose an effective graph convolutional network algorithm to solve it; 4) We consider a dynamic graph as a network with changing nodes and edges in temporal order and propose a temporal adaptive aggregation network (TAAN) for dynamic graph learning. Finally, the proposed models are verified and evaluated on various real-world datasets.
Note

Includes bibliography.

Language
Type
Extent
158 p.
Identifier
FA00014066
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (PhD)--Florida Atlantic University, 2022.
FAU Electronic Theses and Dissertations Collection
Date Backup
2022
Date Created Backup
2022
Date Text
2022
Date Created (EDTF)
2022
Date Issued (EDTF)
2022
Extension


FAU

IID
FA00014066
Person Preferred Name

Wu, Man

author

Graduate College
Physical Description

application/pdf
158 p.
Title Plain
EMBEDDING LEARNING FOR COMPLEX DYNAMIC INFORMATION NETWORKS
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2022
2022
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
EMBEDDING LEARNING FOR COMPLEX DYNAMIC INFORMATION NETWORKS
Other Title Info

EMBEDDING LEARNING FOR COMPLEX DYNAMIC INFORMATION NETWORKS