Model
Digital Document
Publisher
Florida Atlantic University
Description
With the rapid development of networking platforms and data intensive applications, networks (or graphs) are becoming convenient and fundamental tools to model the complex inter-dependence among big scale data. As a result, networks (or graphs) are being widely used in many applications, including citation networks [40], social media networks [71], and so on. However, the high complexity (containing many important information) as well as the dynamic nature of the network makes the graph learning task more difficult. To have better graph representations (capture both node content and graph structure), many research efforts have been made to develop reliable and efficient algorithms. Therefore, the good graph representation learning is the key factor in performing well on downstream tasks. The dissertation mainly focuses on the graph representation learning, which aims to embed both structure and node content information of graphs into a compact and low dimensional space for a new representation learning. More specifically, in order to achieve an efficient and robust graph representation, the following four problems will be studied from different perspectives: 1) We study the problem of positive unlabeled graph learning for network node classification, and present a new deep learning model as a solution; 2) We formulate a new open-world learning problem for graph data, and propose an uncertain node representation learning approach and sampling strategy to solve the problem; 3) For cross-domain graph learning, we present a novel unsupervised graph domain adaptation problem, and propose an effective graph convolutional network algorithm to solve it; 4) We consider a dynamic graph as a network with changing nodes and edges in temporal order and propose a temporal adaptive aggregation network (TAAN) for dynamic graph learning. Finally, the proposed models are verified and evaluated on various real-world datasets.
Member of