Department of Ocean and Mechanical Engineering

Related Entities
Model
Digital Document
Publisher
Florida Atlantic University
Description
Marine Hydrokinetic (MHK) energy is an alternative to address the demand for cleaner energy sources. This study advanced numerical modeling tools and uses these to evaluate the performance of both a Tidal Turbine (TT) and an Ocean Current Turbine (OCT) operating in a variety of conditions. Inflow models are derived with current speeds ranging from 1.5 to 3 m/s and Turbulence Intensities (TI) of 5-15% and integrated into a TT simulation. An OCT simulation representing a commercial scale 20 m diameter turbine moored to the seafloor via underwater cable is enhanced with the capability to ingest Acoustic Doppler Current Profiler (ADCP) data and simulate fault conditions. ADCP measurements collected off the coast of Ft. Lauderdale during Hurricanes Irma and Maria were post-processed and used to characterize the OCT performance. In addition, a set of common faults were integrated into the OCT model to assess the system response in fault-induced scenarios.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Mass transport is important for all biological functions to protect the cell’s environment and to keep its balance of nutrients, proteins and keep the organism alive. We are motivated to study two different types of mass transport, glucose and oxygen that are critical in human system. Specifically, this study focused on mass and oxygen transport in human placenta and oxygen transport in transfusion of artificial oxygen carriers. Studying these processes in vivo or ex vivo are difficult due to ethical or technical challenges.
In this dissertation, Organ-on-a-chip devices were used to simulate placental barrier and blood vessels. In first device, 3D placenta–on-a-chip device consists of a polycarbonate membrane and two Poly dimethylsiloxane microchannels was used. Human umbilical vein endothelial cells were cultured in microfluidic devices and mass transport was measured. In the second device, 3-lane OrganoPlate was used to develop the placental barrier model. The human umbilical vein endothelial cells and trophoblast cells cultured in two microchannels compartmented by polycarbonate membrane (first device) and extracellular matrix gel (second device) to mimic the placental barrier in vitro. Finally, the glucose transfer across the placental barrier affected by malaria parasite was investigated. The results of this study can be used for better understanding of placental malaria pathology and drug efficacy testing.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A computational investigation of the hydrodynamic and seakeeping performance of a catamaran in calm, and in the presence of transforming head and following seas in waters of constant and varying depths is described. Parametric studies were conducted for a selected WAM-V 16 catamaran geometry using OpenFOAM® to uncover the physical phenomena. In the process a methodology has been developed for simulating the interactions between the vehicle and the shallow water environment akin to that in the coastal environment. The multiphase flow around the catamaran, including the six degrees-of-freedom motion of the vehicle, was modeled using a Volume of Fluid (VoF) method and solved using a dynamic mesh. The numerical approach was validated through computing benchmark cases and comparing the results with previous work. It is found that in a calm shallow water environment the total resistance, dynamic trim and sinkage of a catamaran in motion can be significantly impacted by the local water depth. The variations of the impact with depth and length-based Froude numbers are characterized. The impact varies as the vehicle moves from shallow waters to deep water or vice versa. In the presence of head and following small-amplitude seas, interesting interactions between incident waves and those generated by the vehicle are observed and are characterized for their variation with Froude number and water depth.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The objective of this thesis is to review recently developed empirical and analytical models for the surface pressure and wavenumber spectra for fully developed boundary layers to highlight the effect of assumptions about the turbulence length scales and show how the effects of mean flow Reynolds number has on the spectra shape. The Goody model is used as a reference model to compare the spectra shape as it characterizes the basic physical features of the wall-pressure spectrum under a zero-pressure gradient turbulent boundary layer and scales as a function of Reynolds number. The turbulence length scales of the comparison models are modified to observe the effects on the shape of the spectra. A new model is also considered that also scales as a function of Reynolds number and is compared to the Goody model.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The reduction of drag and sound pressure levels (SPL) are desirable traits in many fluidics’ applications ranging from high-speed transportation to energy generation. Inspiration has been found in some species of owls that possess boundary layer control surface treatments on their wings that appear to reduce SPL while in flight. This modification of the flow over the wings is known as the development of a modified boundary layer (MBL). Virginia Tech is working in collaboration with Florida Atlantic University to investigate this reduction in SPL experimentally but requires the assistance of RANS simulation to obtain drag results. This thesis investigates the drag effects of the rod style geometries being evaluated at VT to mimic the MBL of an owl. In doing this it was found that the height of the rods has a direct correlation with the amount of drag induced by the presence of the rods in the flow field.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A non-invasive transient state measurement method for wind tunnels would be very valuable as an experimental tool. Traditional measurement techniques for transient flows, e.g., hot wire anemometry, require sensors that are placed in the flow. Alternatively, particle image velocimetry (PIV) may be used to measure transient flows non intrusively, but applying PIV requires sensors that are expensive, and it may take months to process the data. The non-invasive measurement techniques considered in this thesis utilize sensors that are imbedded into the wall of a wind tunnel, or the response of a Kevlar walled wind tunnel to obtain the pressure time histories of a transient flow. These measurements are suitable and accurate for analyzing steady state flows but the feasibility of using them on time varying flows has yet to be explored. If this method proves possible, it would be very beneficial even if it is less accurate than current invasive methods because it would give results in real time. This thesis investigates a simple
transient flow of the startup vortex of an airfoil caused by a step change in angle of attack. Based on thin airfoil theory, two models of an airfoil were created. It was determined that the response of a Kevlar wall can measure the unsteady lift of an airfoil.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The Design and Development of an automated recharging station for an aerial drone, onboard a small, unmanned surface vessel, is described. Drones require a landing surface that is level within five degrees of the surrounding terrain for repeated reliable landing and takeoff. System constraints and at-sea application necessitate a compact, lightweight, and secure solution. A passive self-leveling platform and an accompanying automated parallel-pusher drone restraint mechanism have been designed and fabricated to aid in achieving a level landing surface and holding the drone in place while it charges. The self-leveling mechanism has been analyzed and subjected to initial laboratory tests. The testing of the drone restraint mechanism to verify its weight capacity and closing time, and the integration of the platform with a custom conductive contact wireless charging pad are identified as future work. The resulting cohesive unit will be tested for performance optimization and implementation onboard the unmanned surface vehicle.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A significant amount of reinforced concrete structures in the USA are reaching the design life span of 50 years. Degradation of these infrastructure due to corrosion presents an economical, safety and quality of life challenge for our society. Being able to study and determine the conditions of our infrastructure, perform maintenance before failure and predict failure before occurrence has become critical for our society and our way of life. This study was performed to add to existing research in the understanding of the relationships between the corrosion current of the embedded carbon steel rebars in reinforced concrete, rebar mass loss due to corrosion and the degradation of the mechanical properties of the carbon steel embedded in high performance concrete structures. The study also aimed to study the influence of different independent variables such as the chloride solution reservoir size and the concrete composition of the prepared specimens for the study.
Specimens for the study were prepared by embedding three carbon steel size #4 rebars in blocks of high performing concrete with different admixture to enhance their performance against corrosion. To initiate corrosion specimens were exposed to accelerated chloride transport method (electromigration). To accelerate corrosion some samples were selected for anodic polarization and additional electromigration.
After corrosion initiation, the rebars Open Circuit Potential (OCP) and corrosion current (Icorr) were periodically measured using a galvanostat device from April 2017 to August 2021. The OCP average values showed that all the rebars considered in this study were in active corrosion. Faraday’s law was used to determine the rebar calculated mass loss from the measured corrosion current and the elapse time between measurements. The rebar mass loss was in turn used to model the loss of the physical properties of the rebar (yield strength, ultimate strength, and ultimate strain) using (Vanama & Ramakrishnan, 2020) model. Analysis of these parameters results showed a direct relationship between the measured corrosion current and the calculated mass loss of the corroding rebar. The study also showed a direct relationship between the calculated mass loss of the corroding rebar and the degradation of the physical properties of the rebar.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The goal of this thesis is to simulate, design and build an automated device that allows unmanned vessels to anchor themselves in specified locations while being United States Coast Guard Navigation Rules compliant. This is a part of a larger project funded by the U.S. Department of Energy for Florida Atlantic University to build an unmanned platform with an Undershot Water Wheel on it. By simulating the environment of the South Florida Intercoastal Water Ways, forces acting on the line, anchor and the vessel are analyzed. These forces are used as the guide for the design and build of a line locking mechanism that takes the tension off the winch and a sensor package to monitor the environment the platform is in as well as control of the system. Based off experimental testing, the system was successful in handling all emulated environments with loads exceeding 150lbs of tension.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Synthetic Aperture Sonar (SAS) provides the best opportunity for side-looking sonar mounted on underwater platforms to achieve high-resolution images. However, SAS processing requires strict constraints on resolvable platform motion. The most common approach to estimate this motion is to use the Redundant Phase Center (RPC) technique. Here the ping interval is set, such that a portion of the sonar array overlaps as the sensor moves forward. The time delay between the pings received on these overlapping elements is estimated using cross-correlation. These time delays are then used to infer the pingto-ping vehicle motion. Given the stochastic nature of the operational environment, some level of decorrelation between these two signals is likely.
In this research, two iterative signal decomposition methods well suited for nonlinear and non-stationary signals, are investigated for their potential to improve the Time Delay Estimation (TDE). The first of this type, the Empirical Mode Decomposition (EMD) was introduced by Huang in the seminal paper, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis and is the foundation for the algorithms used in this research. This method decomposes a signal into a finite sequence of simple components termed Intrinsic Mode Functions (IMFs). The Iterative Filter (IF) approach, developed by Lin, Wang and Zhou, builds on the EMD framework. The sonar signals considered in this research are complex baseband signals. Both the IF and EMD algorithms were designed to decompose real signals. However, the IF variant, the Multivariate Fast Iterative Filtering (MFIF) Algorithm, developed by Cicone, and the EMD variant, the Fast and Adaptive Multivariate Empirical Mode Decomposition (FAMVEMD) algorithm, developed by Thirumalaisamy and Ansell, preserve both the magnitude and phase in the decomposition and hence were chosen for this analysis.