Model
Digital Document
Publisher
Florida Atlantic University
Description
Mass transport is important for all biological functions to protect the cell’s environment and to keep its balance of nutrients, proteins and keep the organism alive. We are motivated to study two different types of mass transport, glucose and oxygen that are critical in human system. Specifically, this study focused on mass and oxygen transport in human placenta and oxygen transport in transfusion of artificial oxygen carriers. Studying these processes in vivo or ex vivo are difficult due to ethical or technical challenges.
In this dissertation, Organ-on-a-chip devices were used to simulate placental barrier and blood vessels. In first device, 3D placenta–on-a-chip device consists of a polycarbonate membrane and two Poly dimethylsiloxane microchannels was used. Human umbilical vein endothelial cells were cultured in microfluidic devices and mass transport was measured. In the second device, 3-lane OrganoPlate was used to develop the placental barrier model. The human umbilical vein endothelial cells and trophoblast cells cultured in two microchannels compartmented by polycarbonate membrane (first device) and extracellular matrix gel (second device) to mimic the placental barrier in vitro. Finally, the glucose transfer across the placental barrier affected by malaria parasite was investigated. The results of this study can be used for better understanding of placental malaria pathology and drug efficacy testing.
In this dissertation, Organ-on-a-chip devices were used to simulate placental barrier and blood vessels. In first device, 3D placenta–on-a-chip device consists of a polycarbonate membrane and two Poly dimethylsiloxane microchannels was used. Human umbilical vein endothelial cells were cultured in microfluidic devices and mass transport was measured. In the second device, 3-lane OrganoPlate was used to develop the placental barrier model. The human umbilical vein endothelial cells and trophoblast cells cultured in two microchannels compartmented by polycarbonate membrane (first device) and extracellular matrix gel (second device) to mimic the placental barrier in vitro. Finally, the glucose transfer across the placental barrier affected by malaria parasite was investigated. The results of this study can be used for better understanding of placental malaria pathology and drug efficacy testing.
Member of