Model
Digital Document
Publisher
Florida Atlantic University
Description
Modeling, implementation, field testing and control of a power takeoff (PTO) device equipped with a ball-type continuously variable transmission (B-CVT) for a small marine hydrokinetic (MHK) turbine deployed from a floating unmanned autonomous mobile catamaran platform is described. The turbine is a partially submerged multi-blade undershot waterwheel (USWW). A validated numerical torque model for the MHK turbine has been derived and a speed controller has been developed, implemented and tested in the field. The dependance of the power generated as a function of number and submergence level of turbine blades has been investigated and the number of blades that maximizes power production is determined. Bench and field testing in support of characterizing the power conversion capabilities of MHK turbine and PTO are described. Detailed results of the final torque and power coefficient models, the controls architecture, and the MHK turbine performance with varying numbers of blades are provided.
Member of