Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis presents the experimental investigation of durability and fracture toughness (K IC) of fly ash concrete in the marine environment. The findings indicate that the deterioration rate of durability parameters, such as compressive strength, weight loss, and dynamic modulus of elasticity, due to 450 wet and dry cycles exposure (the Accelerated Durability Testing), was inversely proportional to the amount of fly ash replacement. On the other hand, tensile strength properties, such as modulus of rupture and fracture toughness, were independent of fly ash replacement, but increased with the period of accelerated testing. The mean K IC values of fly ash concrete mixes showed that they are closely related to their compressive strengths and size effects. According to AE, unstable crack propagation initiated at 93-97% maximum load. With SEM observations, it was found that crystallized particles were precipitated in the void spaces due to chemical reaction between the cement paste and seawater.
Member of