Gravitation

Model
Digital Document
Publisher
Florida Atlantic University
Description
In this dissertation the dynamics of general relativity is studied via the spin-foam approach to quantum gravity. Spin-foams are a proposal to compute a transition amplitude from a triangulated space-time manifold for the evolution of quantum 3d geometry via path integral. Any path integral formulation of a quantum theory has two important parts, the measure factor and a phase part. The correct measure factor is obtained by careful canonical analysis at the continuum level. The basic variables in the Plebanski-Holst formulation of gravity from which spin-foam is derived are a Lorentz connection and a Lorentz-algebra valued two-form, called the Plebanski two-form. However, in the final spin-foam sum, one usually sums over only spins and intertwiners, which label eigenstates of the Plebanski two-form alone. The spin-foam sum is therefore a discretized version of a Plebanski-Holst path integral in which only the Plebanski two-form appears, and in which the conne ction degrees of freedom have been integrated out. Calculating the measure factor for Plebanksi Holst formulation without the connection degrees of freedom is one of the aims of this dissertation. This analysis is at the continuum level and in order to be implemented in spin-foams one needs to properly discretize and quantize this measure factor. The correct phase is determined by semi-classical behavior. In asymptotic analysis of the Engle-Pereira-Rovelli-Livine spin-foam model, due to the inclusion of more than the usual gravitational sector, more than the usual Regge term appears in the asymptotics of the vertex amplitude. As a consequence, solutions to the classical equations of motion of GR fail to dominate in the semi-classical limit. One solution to this problem has been proposed in which one quantum mechanically imposes restriction to a single gravitational sector, yielding what has been called the “proper” spin-foam model. However, this revised model of quantum gravity, like any proposal for a theory of quantum gravity, must pass certain tests. In the regime of small curvature, one expects a given model of quantum gravity to reproduce the predictions of the linearized theory. As a consistency check we calculate the graviton two-point function predicted by the Lorentzian proper vertex and examine its semiclassical limit.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Images of highly idealized Bardeen-Petterson accretion disks around Kerr black holes and their generated energy spectra line profiles are created via computer simulations in this work. The line profiles are examined in the relation to the original disk parameters to demonstrate that Bardeen-Petterson disks can be the source of the spectra we observe, even of actual systems. The challenges in computer programming the simulations and methods to overcome the challenges are discussed in the paper. Also discussed are the future work, improvements and intentions for the simulations. Finally, the discussion turns to the usage of indicators in these line profiles to predict parameters of the original disk systems.