Engle, Jonathan S.

Person Preferred Name
Engle, Jonathan S.
Model
Digital Document
Publisher
Florida Atlantic University
Description
We propose an approach to the quantization of the interior of a Schwarzschild black hole, represented by a Kantowski-Sachs (KS) framework, by requiring its covariance under a notion of residual diffeomorphisms. We solve for the family of Hamiltonian constraint operators satisfying the associated covariance condition, in addition to parity covariance, preservation of the Bohr Hilbert space of Loop Quantum KS and a correct (naïve) classical limit. We further explore imposing minimality of the number of terms, and compare the solution with other Hamiltonian constraints proposed for Loop Quantum KS in the literature, with special attention to a most recent case. In addition, we discuss a lapse commonly chosen to decouple the evolution of the two degrees of freedom of the model, yielding exact solubility of the model, and we show that such choice can indeed be quantized as an operator densely defined on the Bohr Hilbert space, but must include an infinite number of shift operators. Also, we show the reasons why we call the classical limit “naïve”, and point this out as a reason for one limitation of some present prescriptions.
Model
Digital Document
Publisher
Florida Atlantic University
Description
We give a diffeomorphism and gauge covariant condition equivalent to homogeneity and
isotropy which can be quantized, yielding a definition of a diffeomorphism-invariant,
homogeneous isotropic sector of loop quantum gravity without fixing a graph. We then
specialize this condition to Bianchi I cosmologies, in which case it becomes a condition for
isotropy. We show how, by quantizing and imposing this condition in Bianchi I loop quantum
cosmology, one exactly recovers isotropic loop quantum cosmology, including the usual
‘improved dynamics.’ We will also discuss how this reduction sheds light on which operator
ordering to use when defining operators corresponding to directional Hubble rates, expansion,
and shear quantities relevant for discussing the resolution of the initial singularity.
Model
Digital Document
Publisher
Florida Atlantic University
Description
In this dissertation the dynamics of general relativity is studied via the spin-foam approach to quantum gravity. Spin-foams are a proposal to compute a transition amplitude from a triangulated space-time manifold for the evolution of quantum 3d geometry via path integral. Any path integral formulation of a quantum theory has two important parts, the measure factor and a phase part. The correct measure factor is obtained by careful canonical analysis at the continuum level. The basic variables in the Plebanski-Holst formulation of gravity from which spin-foam is derived are a Lorentz connection and a Lorentz-algebra valued two-form, called the Plebanski two-form. However, in the final spin-foam sum, one usually sums over only spins and intertwiners, which label eigenstates of the Plebanski two-form alone. The spin-foam sum is therefore a discretized version of a Plebanski-Holst path integral in which only the Plebanski two-form appears, and in which the conne ction degrees of freedom have been integrated out. Calculating the measure factor for Plebanksi Holst formulation without the connection degrees of freedom is one of the aims of this dissertation. This analysis is at the continuum level and in order to be implemented in spin-foams one needs to properly discretize and quantize this measure factor. The correct phase is determined by semi-classical behavior. In asymptotic analysis of the Engle-Pereira-Rovelli-Livine spin-foam model, due to the inclusion of more than the usual gravitational sector, more than the usual Regge term appears in the asymptotics of the vertex amplitude. As a consequence, solutions to the classical equations of motion of GR fail to dominate in the semi-classical limit. One solution to this problem has been proposed in which one quantum mechanically imposes restriction to a single gravitational sector, yielding what has been called the “proper” spin-foam model. However, this revised model of quantum gravity, like any proposal for a theory of quantum gravity, must pass certain tests. In the regime of small curvature, one expects a given model of quantum gravity to reproduce the predictions of the linearized theory. As a consistency check we calculate the graviton two-point function predicted by the Lorentzian proper vertex and examine its semiclassical limit.