Dias, Rafael Guolo

Relationships
Member of: Graduate College
Person Preferred Name
Dias, Rafael Guolo
Model
Digital Document
Publisher
Florida Atlantic University
Description
We propose an approach to the quantization of the interior of a Schwarzschild black hole, represented by a Kantowski-Sachs (KS) framework, by requiring its covariance under a notion of residual diffeomorphisms. We solve for the family of Hamiltonian constraint operators satisfying the associated covariance condition, in addition to parity covariance, preservation of the Bohr Hilbert space of Loop Quantum KS and a correct (naïve) classical limit. We further explore imposing minimality of the number of terms, and compare the solution with other Hamiltonian constraints proposed for Loop Quantum KS in the literature, with special attention to a most recent case. In addition, we discuss a lapse commonly chosen to decouple the evolution of the two degrees of freedom of the model, yielding exact solubility of the model, and we show that such choice can indeed be quantized as an operator densely defined on the Bohr Hilbert space, but must include an infinite number of shift operators. Also, we show the reasons why we call the classical limit “naïve”, and point this out as a reason for one limitation of some present prescriptions.