Design and construction

Model
Digital Document
Publisher
Florida Atlantic University
Description
Sensors are shaping many activities in our society with an endless array of potential applications in military, civilian, and medical application. They support different real world applications ranging from common household appliances to complex systems. Technological advancement has enabled sensors to be used in medical applications, wherein they are deployed to monitor patients and assist disabled patients. Sensors have been invaluable in saving lives, be it a soldier's life in a remote battlefield or a civilian's life in a disaster area or natural calamities. In every application the sensors are deployed in a pre-defined manner to perform a specific function. Understanding the basic structure of a sensor node is essential as this would be helpful in using the sensors in devices and environments that have not been explored. In this research, patterns are used to present a more abstract view of the structure and architecture of sensor nodes and wireless sensor networks. This would help an application designer to choose from different types of sensor nodes and sensor network architectures for applications such as robotic landmine detection or remote patient monitoring systems. Moreover, it would also help the network designer to reuse, combine or modify the architectures to suit more complex needs. More importantly, they can be integrated with complete IT applications. One of the important applications of wireless sensor networks in the medical field is a remote patient monitoring system. In this work, patterns were developed to describe the architecture of patient monitoring system.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This study examines the development of German pipe organ culture and French classical pipe organ culture from a single common origin in the Duchy of Brabant, during 1450-1850, with respect to select major attributes of organ construction, organ music and organ technique. The respective music of Dieterich Buxtehude (1637-1707), Praeludium in G Minor, BuxWV 149, for the North German contrapuntalists, and of Câesar Franck (1822- 1890), Choral No. 3 in A Minor, for the classical French symphonic tradition, is highlighted and appended with suggested technique for each work.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The aim of this work is to investigate an algebraic attack on block ciphers called Multiple Right Hand Sides (MRHS). MRHS models a block cipher as a system of n matrix equations Si := Aix = [Li], where each Li can be expressed as a set of its columns bi1, . . . , bisi . The set of solutions Ti of Si is dened as the union of the solutions of Aix = bij , and the set of solutions of the system S1, . . . , Sn is dened as the intersection of T1, . . . , Tn. Our main contribution is a hardware platform which implements a particular algorithm that solves MRHS systems (and hence block ciphers). The case is made that the platform performs several thousand orders of magnitude faster than software, it costs less than US$1,000,000, and that actual times of block cipher breakage can be calculated once it is known how the corresponding software behaves. Options in MRHS are also explored with a view to increase its efficiency.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed in an area. One of the main issues addressed in WSNs research is energy efficiency due to sensors' limited energy resources. WSNs are deployed to monitor and control the physical environment, and to transmit the collected data to one or more sinks using multi-hop communication. Energy efficiency protocols represent a key mechanism in WSNs. This dissertation proposes several methods used to prolong WSNs lifetime focusing on designing energy efficient communication protocols. A critical issue for data gathering in WSNs is the formation of energy holes near the sinks where sensor nodes participate more in relaying data on behalf of other sensors. The solution proposed in this dissertation is to use mobile sinks that change their location to overcome the formation of energy holes. First, a study of the improvement in network lifetime when sinks move along the perimeter of a hexagonal tiling is conveyed. Second, a design of a distributed and localized algorithm used by sinks to decide their next move is proposed. Two extensions of the distributed algorithm, coverage and time-delivery requirement, are also addressed. Sensor scheduling mechanisms are used to increase network lifetime by sending redundant sensor nodes to sleep. In this dissertation a localized connected dominating set based approach is used to optimize network lifetime of a composite event detection application. A set of active nodes form a connected set that monitor the environment and send data to sinks. After some time, a new active nodes set is chosen. Thus, network lifetime is prolonged by alternating the active sensors. QoS is another main issue encountered in WSNs because of the dynamically changing network topology.
Model
Digital Document
Publisher
Florida Atlantic University
Description
In response to Florida's growing energy needs and drive to develop renewable power, Florida Atlantic Universitys Center for Ocean Energy Technology (COET) plans to moor a 20 kW test turbine in the Florida Current. No permanent mooring systems for deepwater hydrokinetic turbines have been constructed and deployed, therefore little if anything is known about the performance of these moorings. To investigate this proposed mooring system, a numeric model is developed and then used to predict the static and dynamic behavior of the mooring system and attachments. The model has been created in OrcaFlex and includes two surface buoys and an operating turbine. Anchor chain at the end of the mooring line develops a catenary, providing compliance. Wind, wave, and current models are used to represent the environmental conditions the system is expected to experience and model the dynamic effects on the system. The model is then used to analyze various components of the system. The results identify that a mooring attachment point 1.25 m forward of the center of gravity on the mooring buoy is ideal, and that the OCDP and turbine tether lengths should be no shorter than 25 and 44 m, respectively. Analysis performed for the full system identify that the addition of the floats decreases the tension at the MTB attachment location by 26.5 to 29.5% for minimum current, and 0.10 to 0.31% for maximum current conditions.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A 6-Degree Of Freedom (DOF) numeric model and computer simulation along with the 1/10th scale physical model of the Rapidly Deployable Stable Platform (RDSP) are being developed at Florida Atlantic University in response to military needs for ocean platforms with improved sea keeping characteristics. The RDSP is a self deployable spar platform with two distinct modes of operation enabling long distance transit and superior seakeeping. The focus of this research is the development of a Dynamic Position (DP) and motion mitigation system for the RDSP. This will be accomplished though the validation of the mathematical simulation, development of a novel propulsion system, and implementation of a PID controller. The result of this research is an assessment of the response characteristics of the RDSP that quantifies the performance of the propulsion system coupled with active control providing a solid basis for further controller development and operational testing.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The design of bridge structures to resist explosive loads has become more of a concern to the engineering community. This thesis proposes a method to evaluate the effects of conventional blast loads on a two span continuous composite steel girder bridge system. The bridge design is based on AASHTO LRFD method. Resistance capacities of bridge deck and composite steel girder are calculated according to AASHTO specifications. Equivalent blast pressures on the bridge components are obtained. Response and performance of concrete deck, steel girders, and supporting piers are evaluated under typical blast loads. The blast induced force in the bridge components are computed in the static analyses for varying amounts of TNT. The blast effects in the supporting pier are determined using both static and dynamic analyses. Further research needs to be done in the dynamic analysis of the bridge system subjected to blast loads.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis presents the analytically predicted position, motion, attitude, power output and forces on Florida Atlantic University's (FAU) first generation ocean current turbine for a wide range of operating conditions. These values are calculated using a 7- DOF dynamics simulation of the turbine and the cable that attaches it to the mooring system. The numerical simulation modifications and upgrades completed in this work include developing a wave model including the effects of waves into the simulation, upgrading the rotor model to specify the number of blades and upgrading the cable model to specify the number of cable elements. This enhanced simulation is used to quantify the turbine's performance in a wide range of currents, wave fields and when stopping and starting the rotor. For a uniform steady current this simulation predicts that when the rotor is fixed in 1.5 m/s current the drag on the turbine is 3.0 kN, the torque on the rotor is 384 N-m, the turbine roll and pitch are 2.4º and -1.2º . When the rotor is allowed to spin up to the rotational velocity where the turbine produces maximum power, the turbine drag increases to 7.3 kN, the torque increases to 1482 N-m, the shaft power is 5.8 kW, the turbine roll increases to 9º and the turbine pitch stays constant. Subsequently, a sensitivity analysis is done to evaluate changes in turbine performance caused by changes in turbine design and operation. This analysis show, among other things, that a non-axial flow on the turbine of up to 10º has a minimal effect on net power output and that the vertical stable position of the turbine varies linearly with the weight/buoyancy of the turbine with a maximum variation of 1.77 m for each increase or decrease of 1 kg at a current speed of 0.5 m/s.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The purpose of this study was to investigate whether statistically significant differences existed between high school Honors Physics websites and those of Advanced Placement (AP) Physics in terms of web-design, National Science Education Standards (NSES) Physics content, and NSES Science Process standards. The procedure began with the selection of 152 sites comprising two groups with equal sample sizes of 76 for Honors Physics and for Advanced Placement Physics. The websites used in the study were accumulated using the Google[TM] search engine. To find Honors Physics websites, the search words "honors physics high school" were entered as the query into the search engine. To find sites for Advanced Placement Physics, the query, "advanced placement physics high school," was entered into the search engine. The evaluation of each website was performed using an instrument developed by the researcher based on three attributes: Web-design, NSES Physics content, and NSES Science Process standards. A "1" was scored if the website was found to have each attribute, otherwise a "0" was given. This process continued until all 76 websites were evaluated for each of the two types of physics websites, Honors and Advanced Placement. Subsequently the data were processed using Excel functions and the SPSS statistical software program. The mean and standard deviation were computed individually for the three attributes under consideration. Three, 2-tailed, independent samples t tests were performed to compare the two groups of physics websites separately on the basis of Web Design, Physics Content, and Science Process. The results of the study indicated that there was only one statistically significant difference between high school Honors Physics websites and those of AP Physics.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Controlling the cooperative behaviors of a fleet of autonomous underwater vehicles in a stochastic, complex environment is a formidable challenge in artificial intelligence. The complexity arises from the challenges of limited navigation and communication capabilities of underwater environment. A time critical cooperative operation by acoustic networks of Multiple Cooperative Vehicles (MCVs) necessitates a robust task allocation mechanism and an efficient path planning model. In this work, we present solutions to investigate two aspects of the cooperative schema for multiple underwater vehicles under realistic underwater acoustic communications: a Location-aided Task Allocation Framework (LAAF) algorithm for multi-target task assignment and a mathematical programming model, the Grid-based Multi-Objective Optimal Programming (GMOOP), for finding an optimal vehicle command decision given a set of objectives and constraints. We demonstrate that, the location-aided auction strategies perform significantly better than the generic auction algorithm in terms of effective task allocation time and information bandwidth requirements. In a typical task assignment scenario, the time needed in the LAAF algorithm is only a fraction compared to the generic auction algorithm. On the other hand; the GMOOP path planning technique provides a unique means for multi-objective tasks by cooperative agents with limited communication capabilities. Under different environmental settings, the GMOOP path planning technique is proved to provide a method with balance of sufficient expressive power and flexibility, and its solution algorithms tractable in terms of mission completion time, with a limited increase of overhead in acoustic communication. Prior to this work, existing multi-objective action selection methods were limited to robust networks where constant communication available.