Zhou, Fang.

Relationships
Member of: Graduate College
Person Preferred Name
Zhou, Fang.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A computational tool has been developed by integrating National Renewable Energy Laboratory (NREL) codes, Sandia National Laboratories' NuMAD, and ANSYS to investigate a horizontal axis composite ocean current turbine. The study focused on the design, analysis, and life prediction of composite blade considering random ocean current, cyclic rotation, and hurricane-driven ocean current. A structural model for a horizontal axis FAU research OCT blade was developed. Following NREL codes were used: PreCom, BModes, ModeShape, AeroDyn and FAST. PreComp was used to compute section properties of the OCT blade. BModes and ModeShape calculated the mode shapes of the blade. Hydrodynamic loading on the OCT blade was calculated by modifying the inputs to AeroDyn and FAST. These codes were then used to obtain the dynamic response of the blade, including blade tip displacement, normal force (FN) and tangential force (FT), flap and edge bending moment distribution with respect to blade rotation.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The design of bridge structures to resist explosive loads has become more of a concern to the engineering community. This thesis proposes a method to evaluate the effects of conventional blast loads on a two span continuous composite steel girder bridge system. The bridge design is based on AASHTO LRFD method. Resistance capacities of bridge deck and composite steel girder are calculated according to AASHTO specifications. Equivalent blast pressures on the bridge components are obtained. Response and performance of concrete deck, steel girders, and supporting piers are evaluated under typical blast loads. The blast induced force in the bridge components are computed in the static analyses for varying amounts of TNT. The blast effects in the supporting pier are determined using both static and dynamic analyses. Further research needs to be done in the dynamic analysis of the bridge system subjected to blast loads.