Spragg, Donald Oakley

Relationships
Member of: Graduate College
Person Preferred Name
Spragg, Donald Oakley
Model
Digital Document
Publisher
Florida Atlantic University
Description
In this work a bio-inspired flapping actuator based on varied magnetic fields is
developed, controlled and characterized. The actuator is sought to contribute to the
toolbox of options for bio-mimetics research. The design is that of a neodymium bar
magnet on one end of an armature which is moved by two air core electromagnetic coils
in the same manner as agonist and antagonist muscle pairs function in biological systems.
The other end of the armature is fitted to a rigid fin extending beyond the streamline
enclosure body to produce propulsion. A series of tests in still water were performed to
measure the kinematics and propulsive force for different control schemes including the
effect of adding antagonistic resistance to the control schemes. Control methods based on
armature position and based on setpoint error were tested and antagonist force was found
to increase consistency of control of the systems in certain cases.