Cell cycle

Model
Digital Document
Publisher
Florida Atlantic University
Description
The function and role of PAK6, serine/threonone kinase, in cancer progressionhas not yet been clearly identified. Several studies reveal that PAK6 may participate in key changes contributing to cancer progression such as cell survival, cell motility, and invasiveness. Basedon the membrane localization of PAK6 in prostate and breast cancer cells,we speculated that PAK6 plays a rolein cancer progression cells by localizing on the membrane and modifying proteins linked to motility and proliferation. We isolated the raft domain of breast cancer cells expressing either wild type (WT), constitutively active (SN), or kinase dead PAK6 (KM) and found that PAK6 is a membrane associated kinase which translocates from the plasma membrane to the cytosol when activated. The downstream effects of PAK6 are unknown ; however, results from cell proliferation assays suggest a growth regulatory mechanism.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Two protein tyrosine phosphatases, dual specificity phosphatase PVP and low molecular weight phosphatase WZB were purified and characterized. PVP was expressed as inclusion bodies and a suitable purification and refolding method was devised. Enzyme kinetics revealed that p-nitrophenylphosphate and (Sb(B-naphthyl phosphate were substrates with KM of 4.0mM and 8.1mM respectively. PVP showed no reactivity towards phosphoserine. Kinetic characterization of WZB showed that only pnitrophenylphosphate was a substrate with no affinity for Ç-naphthyl phosphate and phosphoserine. Optimal conditions for activity with PNPP were found at a pH of 5 with a KM of 1.1mM, kcat of 35.4s-1 and kcat/KM of 32.2s-1mM-1. Inhibition studies showed that phosphate, fluoride, and molybdate were competitive inhibitors with Ki of 3.2mM, 71.7mM, and 50.4(So(BM respectively and hydrogen peroxide abolished activity. Active site mutants of WZB Cys9Ser and Asp115Asn showed no activity.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Anticancer drugs, including nocodazole and vinblastine, work by disrupting the dynamics of microtubules. Unfortunately, these drugs often produce numerous side effects, including nausea, vomiting, loss of appetite, loss of hair, increased chance of infection, and fatigue. My thesis research evaluated the efficacy of using repeated low doses of microtubule drugs instead of a single high dose, in an attempt to minimize side effects. Using nocodazole and vinblastine, I first established the minimum effective concentration that disrupts the microtubules in normal human cells grown in vitro and treated cells with those concentrations over a period of several days. I found that microtubules were increasingly depolymerized as the days progressed. Next, I tested a combination of nocodazole and vinblastine at low concentrations.