Yang, KwangSoo

Person Preferred Name
Yang, KwangSoo
Model
Digital Document
Publisher
Florida Atlantic University
Description
Telemetry data has become a crucial resource for detecting abnormal driving behaviors, especially for elderly drivers with Mild Cognitive Impairment (MCI) or dementia. This thesis proposes a novel spatial deep learning method that combines traditional telematics features with Grid-Index Resolution (GIR) to enhance the detection of abnormal driving behavior. By utilizing grid-indexed spatial-temporal analysis, the approach aims to capture more intricate driving patterns, which are often missed by traditional methods that rely only on basic telematics data such as speed, direction, and distance.
The methodology integrates Simple Neural Networks (SNN) to process traditional telematics features and Convolutional Neural Networks (CNN) to handle spatial relationships through grid-based data. The fusion of these two feature sets into a combined model improves the model's ability to accurately classify normal and abnormal driving behaviors.
This thesis evaluates the proposed approach using a dataset collected over 3.5 years from elderly drivers, including those with MCI. Experimental results demonstrate that the combined model achieves a classification accuracy of 97%, outperforming existing methods. The findings suggest that integrating grid-based spatial-temporal analysis into deep learning models offers significant potential for improving road safety, insurance risk assessment, and targeted interventions for at-risk drivers.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Resource allocation for Spatial Network Big Database is challenging due to the large size of spatial networks, variety of types of spatial data, a fast update rate of spatial and temporal elements. It is challenging to learn, manage and process the collected data and produce meaningful information in a limited time. Produced information must be concise and easy to understand. At the same time, the information must be very descriptive and useful. My research aims to address these challenges through the development of fundamental data processing components for advanced spatial network queries that clearly and briefly deliver critical information. This thesis proposal studied two challenging Spatial Network Big Database problems: (1) Multiple Resource Network Voronoi Diagram and (2) Node-attributed Spatial Graph Partitioning.
To address the challenge of query processing for multiple resource allocation in preparing for or after a disaster, we investigated the problem of the Multiple Resource Network Voronoi Diagram (MRNVD). Given a spatial network and a set of service centers from k different resource types, a Multiple Resource Network Voronoi Diagram (MRNVD) partitions the spatial network into a set of Service Areas that can minimize the total cycle-distances of graph-nodes to allotted k service centers with different resource types. The MRNVD problem is important for critical societal applications such as assigning essential survival supplies (e.g., food, water, gas, and medical assistance) to residents impacted by man-made or natural disasters. The MRNVD problem is NP-hard; it is computationally challenging due to the large size of the transportation network. Previous work proposed the Distance bounded Pruning (DP) approach to produce an optimal solution for MRNVD. However, we found that DP can be generalized to reduce the computational cost for the minimum cycle-distance. We extend our prior work and propose a novel approach that reduces the computational cost. Experiments using real-world datasets from five different regions demonstrate that the proposed approach creates MRNVD and significantly reduces the computational cost.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Emergency Management Information Systems (EMIS) are defined as a set of tools that aid decision-makers in risk assessment and response for significant multi-hazard threats and disasters. Over the past three decades, EMIS have grown in importance as a major component for understanding, managing, and governing transportation-related systems. To increase resilience against potential threats, the main goal of EMIS is to timely utilize spatial and network datasets about (1) locations of hazard areas (2) shelters and resources, (3) and how to respond to emergencies. The main concern about these datasets has always been the very large size, variety, and update rate required to ensure the timely delivery of useful emergency information and response for disastrous events. Another key issue is that the information should be concise and easy to understand, but at the same time very descriptive and useful in the case of emergency or disaster. Advancement in EMIS is urgently needed to develop fundamental data processing components for advanced spatial network queries that clearly and succinctly deliver critical information in emergencies. To address these challenges, we investigate Spatial Network Database Systems and study three challenging Transportation Resilience problems: producing large scale evacuation plans, identifying major traffic patterns during emergency evacuations, and identifying the highest areas in need of resources.