Model
Digital Document
Publisher
Florida Atlantic University
Description
In this research, image segmentation and visual odometry estimations in real time
are addressed, and two main contributions were made to this field. First, a new image
segmentation and classification algorithm named DilatedU-NET is introduced. This deep
learning based algorithm is able to process seven frames per-second and achieves over
84% accuracy using the Cityscapes dataset. Secondly, a new method to estimate visual
odometry is introduced. Using the KITTI benchmark dataset as a baseline, the visual
odometry error was more significant than could be accurately measured. However, the
robust framerate speed made up for this, able to process 15 frames per second.
are addressed, and two main contributions were made to this field. First, a new image
segmentation and classification algorithm named DilatedU-NET is introduced. This deep
learning based algorithm is able to process seven frames per-second and achieves over
84% accuracy using the Cityscapes dataset. Secondly, a new method to estimate visual
odometry is introduced. Using the KITTI benchmark dataset as a baseline, the visual
odometry error was more significant than could be accurately measured. However, the
robust framerate speed made up for this, able to process 15 frames per second.
Member of