Dutta, Abhraneel

Relationships
Member of: Graduate College
Person Preferred Name
Dutta, Abhraneel
Model
Digital Document
Publisher
Florida Atlantic University
Description
An efficient scalar multiplication algorithm is vital for elliptic curve cryptosystems. The first part of this dissertation focuses on a scalar multiplication algorithm based on scalar recodings resistant to timing attacks. The algorithm utilizes two recoding methods: Recode, which generalizes the non-zero signed all-bit set recoding, and Align, which generalizes the sign aligned columns recoding. For an ℓ-bit scalar split into d subscalars, our algorithm has a computational cost of ⌈⌈ℓ logk(2)⌉/d⌉ point additions and k-scalar multiplications and a storage cost of kd−1(k − 1) – 1 points on E. The “split and comb” method further optimizes computational and storage complexity. We find the best setting to be with a fixed base point on a Twisted Edwards curve using a mix of projective and extended coordinates, with k = 2 generally offering the best performance. However, k = 3 may be better in certain applications. The second part of this dissertation is dedicated to constant-time polynomial inversion algorithms in Post-Quantum Cryptography (PQC). The computation of the inverse of a polynomial over a quotient ring or finite field is crucial for key generation in post-quantum cryptosystems like NTRU, BIKE, and LEDACrypt. Efficient algorithms must run in constant time to prevent side-channel attacks. We examine constant-time algorithms based on Fermat’s Little Theorem and the Extended GCD Algorithm, providing detailed time complexity analysis. We find that the constant-time Extended GCD inversion algorithm is more efficient, performing fewer field multiplications. Additionally, we explore other exponentiation algorithms similar to the Itoh-Tsuji inversion method, which optimizes polynomial multiplications in the BIKE/LEDACrypt setup. Recent results on hardware implementations are also discussed.