Model
Digital Document
Publisher
Florida Atlantic University
Description
Numerous examples arise in fields ranging from mechanics to biology where disappearance of Chaos can be detrimental. Preventing such transient nature of chaos has been proven to be quite challenging. The utility of Reinforcement Learning (RL), which is a specific class of machine learning techniques, in discovering effective control mechanisms in this regard is shown. The autonomous control algorithm is able to prevent the disappearance of chaos in the Lorenz system exhibiting meta-stable chaos, without requiring any a-priori knowledge about the underlying dynamics. The autonomous decisions taken by the RL algorithm are analyzed to understand how the system’s dynamics are impacted. Learning from this analysis, a simple control-law capable of restoring chaotic behavior is formulated. The reverse-engineering approach adopted in this work underlines the immense potential of the techniques used here to discover effective control strategies in complex dynamical systems. The autonomous nature of the learning algorithm makes it applicable to a diverse variety of non-linear systems, and highlights the potential of RLenabled control for regulating other transient-chaos like catastrophic events.
Member of