AL-Ghanem, Waleed Khalid

Relationships
Member of: Graduate College
Person Preferred Name
AL-Ghanem, Waleed Khalid
Model
Digital Document
Publisher
Florida Atlantic University
Description
This research proposes a cluster-based target tracking strategy for one
moving object using wireless sensor networks. The sensor field is organized in 3
hierarchal levels. 1-bit message is sent when a node detects the target.
Otherwise the node stays silent. Since in wireless sensor network nodes have
limited computational resources, limited storage resources, and limited battery,
the code for predicting the target position should be simple, and fast to execute.
The algorithm proposed in this research is simple, fast, and utilizes all available
detection data for estimating the location of the target while conserving energy.
lbis has the potential of increasing the network life time.
A simulation program is developed to study the impact of the field size
and density on the overall performance of the strategy. Simulation results show
that the strategy saves energy while estimating the location of the target with an
acceptable error margin.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The growing demand for faster connection to the Internet service and wireless
multimedia applications has motivated the development of broadband wireless access
technologies in recent years. WiMAX has enabled convergence of mobile and fixed
broadband networks through a common wide-area radio-access technology and flexible
network architecture. Scheduling is a fundamental component in resource management in
WiMAX networks and plays the main role in meeting QoS requirements such as delay,
throughput and packet loss for different classes of service. In this dissertation work, the performance of uplink schedulers at the fixed WiMAX MAC layer has been considered, we proposed an Adaptive Hierarchical Weighted Fair Queuing Scheduling algorithm, the new scheduling algorithm adapts to changes in traffic, at the same time; it is able to heuristically enhance the performance of WiMAX network under most circumstances. The heuristic nature of this scheduling algorithm enables the MAC layer to meet the QoS requirements of the users. The performance of this adaptive WiMAX Uplink algorithm has been evaluated by simulation using MATLAB. Results indicate that the algorithm is efficient in scheduling the Base Stations’ traffic loads, and improves QoS. The utilization of relay stations is studied and simulation results are compared with the case without using relay stations. The results show that the proposed scheduling algorithm improves Quality of Service of WiMAX system.