Testing

Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis presents the analytically predicted position, motion, attitude, power output and forces on Florida Atlantic University's (FAU) first generation ocean current turbine for a wide range of operating conditions. These values are calculated using a 7- DOF dynamics simulation of the turbine and the cable that attaches it to the mooring system. The numerical simulation modifications and upgrades completed in this work include developing a wave model including the effects of waves into the simulation, upgrading the rotor model to specify the number of blades and upgrading the cable model to specify the number of cable elements. This enhanced simulation is used to quantify the turbine's performance in a wide range of currents, wave fields and when stopping and starting the rotor. For a uniform steady current this simulation predicts that when the rotor is fixed in 1.5 m/s current the drag on the turbine is 3.0 kN, the torque on the rotor is 384 N-m, the turbine roll and pitch are 2.4º and -1.2º . When the rotor is allowed to spin up to the rotational velocity where the turbine produces maximum power, the turbine drag increases to 7.3 kN, the torque increases to 1482 N-m, the shaft power is 5.8 kW, the turbine roll increases to 9º and the turbine pitch stays constant. Subsequently, a sensitivity analysis is done to evaluate changes in turbine performance caused by changes in turbine design and operation. This analysis show, among other things, that a non-axial flow on the turbine of up to 10º has a minimal effect on net power output and that the vertical stable position of the turbine varies linearly with the weight/buoyancy of the turbine with a maximum variation of 1.77 m for each increase or decrease of 1 kg at a current speed of 0.5 m/s.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This paper presents the comparison of shrinkage and corrosion characteristics of optimized hybrid Rice Husk Ash (RHA)/Fly Ash (FA)-modified Concrete, with those of normal concrete in the marine environment. Uses of both FA and RHA have numerous environmental benefits. Shrinkage performance was determined by subjecting the mixes to restrained shrinkage testing per ASTM C1581. The time to cracking of the specimens improved an average of 18% with the hybrid mixes. Corrosion testing of reinforced columns was performed in a simulated tidal cycle Marine Environment. Corrosion potential improved by as much as 35% for the mix with the highest FA/RHA replacement, and corrosion activity as measured with potentiostat equipment improved by an average of 34% . These results indicate a clear performance improvement of the modified concrete that is proportional to the percent replacement of cement.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A detailed study is proposed for understanding the use of aircraft deicing and anti-icing fluids (ADAF) and optimal use of these fluids in airport operations. A detailed literature review of past and current technologies is conducted and possible opportunities to improve the use of ADAF and relevant recommendations are derived. Mathematical optimization models (e.g. MINLP with binary variables) based on a variety of objectives, which deal with exhaustive sets of system constraints are formulated, developed and applied to case studies. One real-life case study area which routinely carries out aircraft deicing is used for testing the mathematical optimization formulations for optimal use of fluids under budgetary and environmental compliance constraints. Based on the recommendations from one of the best optimization model formulations it is hoped that it will be used for a real-time implementation. Results from these formulations show the models to be robust and applicable.
Model
Digital Document
Publisher
Florida Atlantic University
Description
In an effort to obtain an improved mode III fracture toughness test suitable for a testing standard, mechanics analysis, experimental testing, and finite element analysis (FEA) have been conducted. Of particular concern are the merits of one-point and two-point edge crack torsion (ECT) test methods, the influence of specimen geometry that overhangs beyond load/support points, and the influence of crack length on the compliance and energy release rate. Shear stress distributions at the crack front are determined to examine the uniformity of mode III loading and mode II influence. The shear stress distributions in the one-point and two-point tests are virtually identical, indicating that either of the two tests could be used interchangeably. Based on the uniformity of the mode III shear stress distribution along the crack front, it was found that the ECT specimen should have minimum overhang. Longer crack lengths tend to produce nonuniform shear stress distributions. A modified two-point ECT test fixture was developed to allow testing of specimens with a range of dimensions. This development enabled experimental verification of the results from the FEA overhang series. The specimens with a minimum overhang produced consistant mode III toughness data. The most reliable way to reduce data is through the original compliance calibration method. A modified ECT specimen was developed with a staggered crack front to produce uniform mode III crack growth. Finite element analysis of the modified ECT specimen shows a uniform mode III stress distribution along the crack front with little mode II interaction.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A novel approach has been introduced in making flexible armor composites. Armor composites are usually made by reinforcing Kevlar fabric into the mixture of a polymer and nanoscale particles. The current procedure deviates from the traditional shear thickening fluid (STF) route and instead uses silane (amino-propyl-trimethoxy silane) as the base polymer. In addition, a cross-linking fixative such as Glutaraldehyde (Gluta) is added to the polymer to create bridges between distant pairs of amine groups present in Kevlar and silated nanoparticles. Water, silane, nanoparticles and Gluta are mixed using a homogenizer and an ultra-sonochemical technique. Subsequently, the admixture is impregnated with Kevlar - bypassing the heating and evaporating processes involved with STF. The resulting composites have shown remarkable improvement in spike resistance; at least one order higher than that of STF/Kevlar composites. The source of improvement has been traced to the formation of secondary amine C-N stretch due to the presence of Gluta.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The combination of highly turbulent airflow, flammable fluids, and numerous ignition sources makes aircraft engine nacelles a difficult fire zone to protect. Better understanding of nacelle air flow and how it influences the spread of fires and fire extinguishing agents is needed to improve the efficiency of fire suppression. The first objective was to establish a CFD model for a flow field test section to analyze the transport and dispersion of fire extinguishing agents in the presence of various clutter elements. To validate the use of the CFD model, the simulation results of the CFD model were compared to the experimental data and they show an agreement with the experimental data. The second objective was to present parametric studies to show the effects of the coflow speed, turbulence intensity and agent droplet size on the transport and dispersion of the agent particles downstream from the clutter elements.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Cancer is the second leading cause of death in the western world. In order to treat various types of cancer, platinum-based drugs are most widely employed as metal-containing chemotherapeutic agents. However, their clinical usage is hindered by toxic side effects, and by the emergence of drug resistance. Our focus was to replace platinum with less toxic metal like tin which can give better alternatives for cancer treatment. The major aim of our study was to synthesize novel organotin polyethers (Sn-O) which can be used to combat cancer. Preliminary results from our laboratory using organotin polyethers, that were synthesized by varying the structure of diols showed growth inhibition in Balb-3T3 cells. This study directly led us to hypothesize the two structural windows, first by changing the distance between diol and second, by presence of unsaturation in diols, the biological activity of organotin polyethers (Sn-O) can be enhanced significantly. Different series of polymeric compounds were synthesized based upon these two structural windows and the formation of products was validated using standard techniques like infrared spectroscopy (IR), light scattering photometer, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and nuclear magnetic resonance (NMR). The synthesized polymers arrested the growth of cancer cell lines including bone, prostate, colon, breast, pancreas and lung cancer derived cell lines in vitro. In number of instances where chemotherapeutic index values of two and greater were found that these polymers are significantly more active against cancer cells than non-cancerous cells in culture.
Model
Digital Document
Publisher
Florida Atlantic University
Description
New neurons are continuously generated in the olfactory system of adult mice, including olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) and interneurons, produced in the subventricular zone (SVZ) and migrated toward olfactory bulb (OB) along rostral migratory stream (RMS). The present study observed the effects of target neuron loss on the life-span and maturation of adult-born OSNs in the OE and on the proliferation, migration and differentiation of SVZ stem cells in the forebrain after eliminating bulb neurons. We found the life-span of newborn neurons in the absence of synaptic targets was shortened, but the timing of maturation was not delayed. In addition, SVZ cells continued to divide and migrate to the damaged bulb, and the migration of newborn cells in the RMS on the contralateral side was delayed at 2 weeks post-BrdU. Also, the proliferation of cells in dentate gyrus of the hippocampus was not affected by OB damage at 3 weeks post-lesion, though lesion affects occurred in the adult SVZ/RMS.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This research focuses on carbon fiber treatment by nitric acid and 3- (trimethoxysilyl)propyl methacrylate silane, and how this affects carbon/vinyl ester composites. These composites offer great benefits, but it is difficult to bond the fiber and matrix together, and without a strong interfacial bond, composites fall short of their potential. Silanes work well with glass fiber, but do not bond directly to carbon fiber because its surface is not reactive to liquid silanes. Oxidizing surface treatments are often prescribed for improved wetting and bonding to carbon, but good results are not always achieved. Furthermore, there is the unanswered question of environmental durability. This research aimed to form a better understanding of oxidizing carbon fiber treatments, determine if silanes can be bonded to oxidized surfaces, and how these treatments affect composite strength and durability before and after seawater exposure. Nitric acid treatments on carbon fibers were found to improve their tensile strength to a constant level by smoothing surface defects and chemically modifying their surfaces by increasing carbonyl and carboxylic acid concentrations. Increasing these surface group concentrations raises fiber polar energy and causes them to cohere. This impedes wetting, resulting in poor quality, high void content composites, even though there appeared to be improved adhesion between the fibers and matrix. Silane was found to bond to the oxidized carbon fiber surfaces, as evidenced by changes in both fiber and composite properties. The fibers exhibited low polarity and cohesion, while the composites displayed excellent resin wetting, low void content, and low seawater weight gain and swelling. On the contrary, the oxidized fibers that were not treated with silane exhibited high polarity and fiber cohesion.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The primary objective of this research is the development a wind and solar-powered autonomous surface vehicle (WASP) for oceanographic measurements. This thesis presents the general design scheme, detailed aerodynamic and hydrodynamic aspects, sailing performance theory, and dynamic performance validation measurements obtained from a series of experiments. The WASP consists of a 4.2 meter long sailboat hull, a low-Reynolds number composite wing, a 2000 Watt-hour battery reservoir, a system of control actuators, a control system running on an embedded microprocessor, a suite of oceanographic sensors, and power regeneration from solar energy. The vehicle has a maximum speed of five knots and weighs approximately 350 kilograms. Results from four oceanographic missions that were conducted in the Port Everglades Intracoastal Waterway in Dania Beach [sic] Florida are presented. Water temperature, salinity and oxidation-reduction measurements recorded during these missions are also discussed. The combination of a mono-hull and solid wing in an autonomous system is a viable design for a long-range ocean observation platform. The results of four near-shore ocean observation missions illustrate the initial capabilities of the design. Future work aimed to further reduce both the mass of the wing design and the power requirements of the system will increase performance in all operating conditions and should be considered. Furthermore, the progression of the legal framework related to ocean vehicles must be pursued with respect to unmanned autonomous systems.