Department of Civil, Environmental and Geomatics Engineering

Person Preferred Name
Department of Civil, Environmental and Geomatics Engineering
Model
Digital Document
Publisher
Florida Atlantic University
Description
Research, tests and analysis are presented on several reinforcements placed in the asphalt overlay of a roadway built over soft organic soils. Non-destructive Evaluation (NDE) methods and statistical analysis were used to characterize the pavement before and after rehabilitative construction. Before reconstruction, falling weight deflectometer, rut and ride tests were conducted to evaluate the existing pavement and determine the statistical variability of critical site characteristics. Twenty-four 500ft. test sections were constructed on the roadway including sixteen reinforced asphalt and eight control sections at two test locations that possessed significantly different subsoil characteristics. NDE tests were repeated after reconstruction to characterize the improvements of the test sections. Test results were employed to quantify the stiffness properties of the pavement based on load-deflection data to evaluate the relative performance of the reinforced sections. Statistical analysis of the data showed the stiffness of the reinforced sections was consistently higher than the control sections.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This paper presents the comparison of shrinkage and corrosion characteristics of optimized hybrid Rice Husk Ash (RHA)/Fly Ash (FA)-modified Concrete, with those of normal concrete in the marine environment. Uses of both FA and RHA have numerous environmental benefits. Shrinkage performance was determined by subjecting the mixes to restrained shrinkage testing per ASTM C1581. The time to cracking of the specimens improved an average of 18% with the hybrid mixes. Corrosion testing of reinforced columns was performed in a simulated tidal cycle Marine Environment. Corrosion potential improved by as much as 35% for the mix with the highest FA/RHA replacement, and corrosion activity as measured with potentiostat equipment improved by an average of 34% . These results indicate a clear performance improvement of the modified concrete that is proportional to the percent replacement of cement.