Pava, Diego F.

Relationships
Member of: Graduate College
Person Preferred Name
Pava, Diego F.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Time Average Fourier Telescopy (TAFT) has been proposed as a means for obtaining high-resolution, diffraction-limited images over large distances through ground-level horizontal-path atmospheric turbulence. Image data is collected in the spatial-frequency, or Fourier, domain by means of Fourier Telescopy; an inverse two dimensional Fourier transform yields the actual image. TAFT requires active illumination of the distant object by moving interference fringe patterns. Light reflected from the object is collected by a “light-bucket” detector, and the resulting electrical signal is digitized and subjected to a series of signal processing operations, including an all-critical averaging of the amplitude and phase of a number of narrow-band signals.
Model
Digital Document
Publisher
Florida Atlantic University
Description
With augmenting security concerns and decreasing costs of surveillance and computing equipment, research on automated systems for object detection has been increasing, but the majority of the studies focus their attention on sequences where high resolution objects are present. The main objective of this work is the detection and extraction of information of low resolution objects (e.g. objects that are so far away from the camera that they occupy only tens of pixels) in order to provide a base for higher level information operations such as classification and behavioral analysis. The system proposed is composed of four stages (preprocessing, background modeling, information extraction, and post processing) and uses context based region of importance selection, histogram equalization, background subtraction and morphological filtering techniques. The result is a system capable of detecting and tracking low resolution objects in a controlled background scene which can be a base for systems with higher complexity.