Model
Digital Document
Publisher
Florida Atlantic University
Description
Synaptic transmission is a mechanism that makes life possible for many organisms. Damaging this crucial process, such as with a buildup of Reactive Oxygen Species (ROS), is extremely detrimental for the entire organism. Previously, the Dawson-Scully lab has determined that exposure of the Drosophila melanogaster neuromuscular junction (NMJ) to ROS accumulation can result in synaptic failure at a faster rate than saline controls (Caplan et al., 2013). To combat such effects, novel three-dimensional Resveramorph compounds were created to act as a neuroprotective agent against the harmful effects of acute oxidative stress (Bollinger et al., 2019; Sial et al., 2019). With the initial Resveramorph compounds demonstrating neuroprotective effects, additional analysis of other Resveramorph compounds were of interest to better understand their role in neuroprotection. Further testing of these compounds allows for the investigation of how chemical structure affects a compound’s neuroprotective activity.
Member of