Model
Digital Document
Publisher
Florida Atlantic University
Description
During eye lens development the lens receives oxygen from a network of capillaries that comprise of the tunica vasculosa lentis and the anterior pupillary membrane. In development there is regression of this capillaries with the vitreous and aqueous humor, which is the lens only source of oxygen, leaving the lens in low oxygen state. The lens contains a decreasing oxygen gradient from the surface to the core that parallels the differentiation of immature surface epithelial cells into mature core transparent fiber cells. These properties of the lens suggest a potential role for hypoxia and the master regulator of the hypoxic response, hypoxia-inducible transcription factor 1 alpha (HIF1a), in the regulation of genes required for lens fiber cell differentiation, structure, and transparency. Previous studies by our lab discovered the HIF1a-dependent gene expression patterns of lens genes by utilizing a Multiomics approach that integrated analysis from CUT&RUN, RNA-seq, and ATACseq. Additionally, our lab also established a hypoxia and HIF1a-dependent mechanism for the non-nuclear organelle degradation process required to form mature transparent fiber cells.
Member of