Shaffer, Samuel

Relationships
Member of: Graduate College
Person Preferred Name
Shaffer, Samuel
Model
Digital Document
Publisher
Florida Atlantic University
Description
Traditional techniques of observing cracking within reinforced structures can be invasive, leading to an increased risk of added corrosion to structures already undergoing corrosive processes. The research presented in this document improves upon a nondestructive method for detecting early crack formation in reinforced concrete. This method includes using acoustic signaling to add a layer of salt water between the sensor and analyzed sample. Following the collection of surface and rebar echo responses, an adapted version of the novel Biot-Stoll method is used to model sound propagation for poro-elastic mediums. Testing of model parameters and variables has improved the root mean square error (RMSE) by up to 63.7% when studying the full signal, and up to 62.6% for the rebar echo locations. These improvements signify better curve fitting between simulated and measured responses, which lead to increased accuracy in the model parameter outputs.