Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis presents a method for modeling navigation sensors used on ocean systems and particularly on Autonomous Underwater Vehicles (AUV). An extended Kalman filter was previously designed for the implementation of the Inertial Navigation System (INS) making use of Inertial Measurement Unit (IMU), a magnetic compass, a GPS/DGPS system and a Doppler Velocity Log (DVL). Emphasis is put on characterizing the static sensor error model. A "best-fit ARMA model" based on the Aikake Information Criterion (AIC), Whiteness test and graphical analyses were used for the model identification. Model orders and parameters were successfully estimated for compass heading, GPS position and IMU static measurements. Static DVL measurements could not be collected and require another approach. The variability of the models between different measurement data sets suggests online error model estimation.
Member of