Kinematics

Model
Digital Document
Publisher
Florida Atlantic University
Description
Many studies on shark swimming have examined kinematic variables along straight tracks or under controlled flow speeds in flumes, but there is less known about unsteady swimming during maneuvering or feeding. Sharks may adjust their speed, undulatory kinematics, or body curvature to accommodate different actions. This study quantified variations in kinematics during straight swimming, maneuvering, and feeding in scalloped hammerhead sharks (Sphyrna lewini). I obtained video of three juvenile scalloped hammerheads, developed an ethogram assessing three behavioral categories, and tracked points along the body’s midline. I found that velocity was lower during feeding compared to maneuvering and straight swimming, while body curvature increased during feeding turns but decreased with increasing velocity. These data will provide insight into kinematic variations in hammerhead sharks across ontogeny and among behaviors, ultimately expanding on the relationship between form and function. This also provides context for varying behaviors and trends within the movement ecology paradigm.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Sharks are an objectively diverse group of animals; ranging in maximum size from 2,000cm (whale shark) to 17cm (dwarf lantern shark); occupying habitats that are periodically terrestrial (epaulette shark) to the deepest parts of the ocean (frilled shark); relying on a diversity of diets from plankton to marine mammals; with vast amounts of morphology diversity such as the laterally expanded heads of hammerhead species, the elongate caudal fins of thresher species, and the tooth embedded rostrum of saw shark species representing some of the anatomical extremes. Yet despite these obvious differences in morphology, physiology, and ecology, the challenges associated with studying hard to access, large bodied, pelagic animals have limited our comparative understanding of form and function as it relates to swimming within this group. The majority of shark swimming studies examine species that succeed in captivity, which are usually benthic associated sharks that spend time resting on the substrate. These studies have also been limited by the use of flumes, in which the unidirectional flow and small working area precludes the analysis of larger animals, volitional swimming, and maneuvering. The few existing volitional kinematics studies on sharks quantify two-dimensional kinematics which are unable to capture movements not observable in the plane of reference. With this study, we quantified the volitional swimming kinematics of sharks in relation to morphological, physiological, and ecological variation among species. We developed a technique to analyze three-dimensional (3D) kinematics in a semi-natural, large volume environment, which, to our knowledge, provides the first3D analysis of volitional maneuvering in sharks. We demonstrated that Pacific spiny dogfish and bonnethead sharks rotate the pectoral fins substantially during yaw (horizontal) maneuvering and is correlated with turning performance. We proposed that ecomorphological differences correlate with the varied maneuvering strategies we observed between the two species. We also found that there is some mechanical constraint on shark pectoral fin shape that is explained by phylogenetic relationships but describe a continuum of morphological variables within that range. We propose standardized terminology and methodology for the future assessment of shark pectoral fin morphology and function. As with previous studies, the ease of access to species was a challenge in this study and future studies should continue to assess the functional ecomorphology of shark pectoral fins among species.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Traditional industrial manipulators possess fixed configuration and are widely used in manufacturing application in which the manipulator base is fixed. However, some applications exist which would require the robotic manipulators to function in non-stationary environment especially in space. In this thesis, a six degree of freedom parallel-series hybrid manipulator is described. It consists of a 3 d.o.f. in-series manipulator mounted on a 3 d.o.f. in-parallel manipulator. A compatibility equation is found to govern the relationship between in-series component angular velocity and linear velocity; a constraint equation is added to the Jacobian of in-parallel component. Using these two equations, a decomposition strategy is proposed for solving the inverse velocity problem of the hybrid manipulator together with the simulation examples of inverse position tracking and straight line trajectory planning. Effectiveness of this method and factors affecting the simulation result are examined.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A PC-based Expert System that uses symbolic manipulations and an inference engine rule-based system to solve direct and inverse kinematics of revolute-jointed manipulators of arbitrary configuration is presented and discussed. Similar applications in the areas of Discrete Signal Processing and Optimal Control are analyzed.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A well designed robot manipulator should have adequate workspace and good static-dynamic performance. It is well known that serial manipulators, while compared to similar size parallel ones, have larger workspace. However, due to their cantilever-like structure, the serial manipulators suffer from the disadvantage of having relatively poor static-dynamic performance. Contrarily, for fully parallel manipulators the good static-dynamic performance comes from the sacrifice of the workspace. Therefore, manipulators with more general geometries, in particular those with both the serial and the parallel modules, namely the hybrid manipulators, have attracted much of the research attention in robotics recently. While it can be asserted that kinematic theories and techniques are well established for fully serial-chain manipulators, the same assertion cannot be made when they are considered in the above general context. The research described in this dissertation is an undertaking toward the establishment of a general theory of coordination for robotic mechanisms with general parallel or hybrid structures. The scope of this research is concentrated in the kinematics aspect of the aforementioned class of robot manipulators with the main emphasis on the velocity (instantaneous) kinematics. A kinestatic approach, which is based on screw system theory, is adopted in this dissertation. This kinestatic approach leads to the establishment of a fundamental theorem, dubbed as the Parallel Manipulator Coordination Theorem, which integrates the idea of parallel and serial manipulators. Furthermore, the theorem enables us to develop an analysis strategy for systematic formulation and characterization of robotic mechanisms with general parallel (non-redundant) and hybrid geometries. The analysis strategy entails constraints, statics, velocity, and singularity considerations. One distinct advantage of using the screw system theory as the analysis tool is that it facilitates the analysis in a fashion that physical meanings are preserved through out the derivation. The very aspect of preserving the physical meaning distinguishes this method from other algebraically-based and numerically-based methods. An intelligent fault-tolerant system has been studied at the end. The technique and conclusions from the study of parallel manipulator modules have been used to analyze the proposed design.