The Functional Morphology of Shark Control Surfaces: A Comparative Analysis

File
Publisher
Florida Atlantic University
Date Issued
2019
EDTF Date Created
2019
Description
Sharks are an objectively diverse group of animals; ranging in maximum size from 2,000cm (whale shark) to 17cm (dwarf lantern shark); occupying habitats that are periodically terrestrial (epaulette shark) to the deepest parts of the ocean (frilled shark); relying on a diversity of diets from plankton to marine mammals; with vast amounts of morphology diversity such as the laterally expanded heads of hammerhead species, the elongate caudal fins of thresher species, and the tooth embedded rostrum of saw shark species representing some of the anatomical extremes. Yet despite these obvious differences in morphology, physiology, and ecology, the challenges associated with studying hard to access, large bodied, pelagic animals have limited our comparative understanding of form and function as it relates to swimming within this group. The majority of shark swimming studies examine species that succeed in captivity, which are usually benthic associated sharks that spend time resting on the substrate. These studies have also been limited by the use of flumes, in which the unidirectional flow and small working area precludes the analysis of larger animals, volitional swimming, and maneuvering. The few existing volitional kinematics studies on sharks quantify two-dimensional kinematics which are unable to capture movements not observable in the plane of reference. With this study, we quantified the volitional swimming kinematics of sharks in relation to morphological, physiological, and ecological variation among species. We developed a technique to analyze three-dimensional (3D) kinematics in a semi-natural, large volume environment, which, to our knowledge, provides the first3D analysis of volitional maneuvering in sharks. We demonstrated that Pacific spiny dogfish and bonnethead sharks rotate the pectoral fins substantially during yaw (horizontal) maneuvering and is correlated with turning performance. We proposed that ecomorphological differences correlate with the varied maneuvering strategies we observed between the two species. We also found that there is some mechanical constraint on shark pectoral fin shape that is explained by phylogenetic relationships but describe a continuum of morphological variables within that range. We propose standardized terminology and methodology for the future assessment of shark pectoral fin morphology and function. As with previous studies, the ease of access to species was a challenge in this study and future studies should continue to assess the functional ecomorphology of shark pectoral fins among species.
Note

Includes bibliography.

Language
Type
Extent
185 p.
Identifier
FA00013217
Additional Information
Includes bibliography.
Dissertation (Ph.D.)--Florida Atlantic University, 2019.
FAU Electronic Theses and Dissertations Collection
Date Backup
2019
Date Created Backup
2019
Date Text
2019
Date Created (EDTF)
2019
Date Issued (EDTF)
2019
Extension


FAU

IID
FA00013217
Organizations
Person Preferred Name

Hoffmann, Sarah Louise

author

Graduate College
Physical Description

application/pdf
185 p.
Title Plain
The Functional Morphology of Shark Control Surfaces: A Comparative Analysis
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2019
2019
Florida Atlantic University

Boca Raton, Fla.

Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
The Functional Morphology of Shark Control Surfaces: A Comparative Analysis
Other Title Info

The Functional Morphology of Shark Control Surfaces: A Comparative Analysis