Sharks

Model
Digital Document
Publisher
Florida Atlantic University
Description
This study examined the effectiveness of a magnetic shark deterrent, the SharkBanz® Zeppelin, and quantified the magnetic field it produces. A shark entering the magnetic field induces an electric field that is detectable by electroreceptors. This novel stimulus may deter sharks away from hooked fish. The magnitude declined rapidly with distance and reached the ambient geomagnetic field at 36-39 cm away. Zeppelin devices and non-magnetic controls were deployed with baited remote underwater video systems, and the responses of sharks were recorded. There was a significant difference between the number of sharks deterred between the Zeppelin and control. The Zeppelin deterred sharks on 22% of their approaches in the effective range, whereas the control deterred them on 2.6% of their approaches. Although the device may be effective at deterring sharks and act as a mitigation strategy for shark depredation, tests with live fish that provide more sensory stimuli are needed.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Sharks are an objectively diverse group of animals; ranging in maximum size from 2,000cm (whale shark) to 17cm (dwarf lantern shark); occupying habitats that are periodically terrestrial (epaulette shark) to the deepest parts of the ocean (frilled shark); relying on a diversity of diets from plankton to marine mammals; with vast amounts of morphology diversity such as the laterally expanded heads of hammerhead species, the elongate caudal fins of thresher species, and the tooth embedded rostrum of saw shark species representing some of the anatomical extremes. Yet despite these obvious differences in morphology, physiology, and ecology, the challenges associated with studying hard to access, large bodied, pelagic animals have limited our comparative understanding of form and function as it relates to swimming within this group. The majority of shark swimming studies examine species that succeed in captivity, which are usually benthic associated sharks that spend time resting on the substrate. These studies have also been limited by the use of flumes, in which the unidirectional flow and small working area precludes the analysis of larger animals, volitional swimming, and maneuvering. The few existing volitional kinematics studies on sharks quantify two-dimensional kinematics which are unable to capture movements not observable in the plane of reference. With this study, we quantified the volitional swimming kinematics of sharks in relation to morphological, physiological, and ecological variation among species. We developed a technique to analyze three-dimensional (3D) kinematics in a semi-natural, large volume environment, which, to our knowledge, provides the first3D analysis of volitional maneuvering in sharks. We demonstrated that Pacific spiny dogfish and bonnethead sharks rotate the pectoral fins substantially during yaw (horizontal) maneuvering and is correlated with turning performance. We proposed that ecomorphological differences correlate with the varied maneuvering strategies we observed between the two species. We also found that there is some mechanical constraint on shark pectoral fin shape that is explained by phylogenetic relationships but describe a continuum of morphological variables within that range. We propose standardized terminology and methodology for the future assessment of shark pectoral fin morphology and function. As with previous studies, the ease of access to species was a challenge in this study and future studies should continue to assess the functional ecomorphology of shark pectoral fins among species.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The present study describes the first cell lines produced from members of class Chondrichthyes. Explants of brain tissue from Carcharhinus falciformis (silky shark) and Ginglymostoma cirratum (nurse shark) were incubated in a mammalian medium modified with the addition of urea, trimethylamine N-oxide, NaCl, and bovine serum. Primary monolayers were passaged with 0.025% trypsin in a modified saline solution. Silky shark cells grew optimally at 29C. The population doubling time for C. falciformis cells at passage 29 was 67 hours. For G. cirratum cells at passage 6 the population doubling was 84 hours. Silky shark cells grew over a broad range of osmolalities from 315 mOsm to a 1664 mOsm with optimal growth at 650 mOsm. A medium containing 10% dimethylsulfoxide allowed for cryopreservation with greater than 65% viability upon recovery. Current theories of elasmobranch osmoregulation are discussed in light of experimental data collected from studies conducted on the silky shark cell line.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Commercial longline fishing results in large amounts of incidental bycatch of elasmobranch fishes (sharks, skates, and rays). Teleost species lack electrosensory systems and development of technologies which target the ampullary organs of sharks provides an avenue to selectively deter elasmobranchs without affecting the catch rate of target teleosts. Electric field measurements and a controlled scientific longline study were conducted testing whether the lanthanide metal neodymium or zinc/graphite might reduce elasmobranch catch per unit effort (CPUE). Baited longline hooks were treated with neodymium and zinc/graphite and catch rates were compared to that of controls. Shark CPUE decreased by 60% on neodymium treated hooks and 80% on zinc/graphite treated hooks. The effectiveness of both treatments varied among species with significant reductions shown for Atlantic sharpnose sharks (Rhizoprionodon terranovae) but less dramatic differences for others. Zinc/graphite is potentially a viable tool for reduction of shark bycatch in a commercial longline fishery.
Model
Digital Document
Publisher
Florida Atlantic University
Description
In examining the intentional relationship between the conservationist and the shark in South Florida, this thesis considers the latter as both a scarce natural resource - caught up in what Clifford Geertz citing Weber referred to as "webs of significance" (Geertz 1973:5) - and as a reflection of dynamic human conceptions of nature : a meta shark. This complex relationship is described by interpretations of conservation discourse recorded through ethnographic interviews that demonstrate how these perceptions have been influenced by factors such as personal experiences, film and text, and broad changes in the relationship between humans and nature since the early days of the environmental movement. By linking these perceptual changes with changes in American shark conservation policy, this work not only explains a relationship between culture, perception, and policy, but also celebrates the emergence of a multispecies marine community.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The olfactory system is the most highly developed system for molecular sensing in vertebrates. Despite their reputation for being particularly olfactory driven, little is known about how this sense functions in elasmobranch fishes. The goal of this dissertation was to examine the morphology and physiology of elasmobranchs to compare their olfactory system with teleost fishes and more derived vertebrates. To test the hypotheses that elasmobranchs possess greater olfactory sensitivities than teleosts and that lamellar surface area is correlated to sensitivity, I compared the surface area of the olfactory lamellae and the olfactory sensitivities of five phylogenetically diverse elasmobranch species. The olfactory thresholds reported here (10-9 to 10-6 M) were comparable to those previously reported for teleosts and did not correlate with lamellar surface area. Since aquatic species are subject to similar environmental amino acid levels, they appear to have converged upon similar amino acid sensitivities. To test the hypothesis that elasmobranchs are able to detect bile salt odorants despite lacking ciliated olfactory receptor neurons (ORNs), the type of ORN that mediates bile salt detection in the teleosts, I quantified the olfactory specificity and sensitivity of two elasmobranch species to four, teleost-produced C24 bile salts. Both species responded to all four bile salts, but demonstrated smaller relative responses and less sensitivity compared to teleosts and agnathans. This may indicate that elasmobranchs don't rely on bile salts to detect teleost prey. Also, the olfactory system of elasmobranchs contains molecular olfactory receptors for bile salts independent of those that detect amino acids, similar to teleosts.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Although most batoids (skates and rays) are benthic, only the skates (Rajidae) have been described as performing benthic locomotion, termed 'punting'. While keeping the rest of the body motionless, the skate's specialized pelvic fins are planted into the substrate and then retracted caudally, which thrusts the body forward. This may be advantageous for locating and feeding on prey, avoiding predators, and reducing energetic costs. By integrating kinematic, musculoskeletal, material properties, and compositional analyses across a range of morphologically and phylogenetically diverse batoids, this dissertation (i) demonstrates that punting is not confined to the skates, and (ii) provides reliable anatomical and mechanical predictors of punting ability. Batoids in this study performed true punting (employing only pelvic fins), or augmented punting (employing pectoral and pelvic fins). Despite the additional thrust from the pectoral fins, augmented punters failed to exceed the punting c apabilities of the true punters. True punters' pelvic fins had greater surface area and more specialized and robust musculature compared to the augmented punters' fins. The flexural stiffness of the main skeletal element used in punting, the propterygium, correlated with punting ability (3.37 x 10-5 - 1.80 x 10-4 Nm2). Variation was due to differences in mineral content (24.4-48-9% dry mass), and thus, material stiffness (140-2533 MPa), and second moment of area. The propterygium's radius-to-thickness ratio (mean = 5.52 +-0.441 SE) indicated that the propterygium would support true and augmented punters, but not non-punters, in an aquatic environment. All propterygia would fail on land. Geometric and linear morphometric analyses of 61 batoid pelvic girdles demonstrated that pelvic girdle shape can predict punting and swimming ability and taxonomic attribution to Order.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The hydrodynamics of three different shark heads: Eusphyra blochii (Winghead shark), Carcharhinus acronotus (Blacknose shark) and Sphyrna tiburo (Bonnethead shark) were investigated. Force transducer measurement was used to explore how the cephalofoil (wing-shaped head) affects maneuverability and efficiency. As the dynamic behavior of maneuvering wings differs from that of the steady state motion, experiments have been conducted to simulate: 1) steady-state (no yaw motion) constant velocity swimming, 2) constant forward velocity with yawing motion of the head and 3) turning maneuvers. Different range of velocities, angle of attack, yaw frequency and yaw amplitude were tested. Drag and lift coefficients were calculated and compared. The lift coefficient of Winghead shark is much higher compared to the other sharks. The lift-to-drag ratio showed that the Winghead shark has a hydrodynamic advantage compared to Blacknose shark and Bonnethead shark.