Model
Digital Document
Publisher
Florida Atlantic University
Description
The elevated energy demand and high dependency on fossil fuels have directed researchers’ attention to promoting and advancing hydraulic fracturing (HF) operations for a sustainable energy future. Previous studies have demonstrated that the particle suspension and positioning in slick water play a vital role during the injection and shut-in stages of the HF operations. A significant challenge to HF is the premature particle settling and uneven particle distribution in a formation. Even though various research was conducted on the topic of particle transport, there still exist gaps in the fundamental particle-particle interaction mechanisms. This dissertation utilizes both experimental and numerical approaches to advance the state of the art in particle-particle interactions in various test conditions. Experimentally, the study utilizes high-speed imaging coupled with particle tracking velocimetry (PTV) and particle image velocimetry (PIV) to provide a space and time-resolved investigation of both two-particle and multi-particle interactions during gravitational settling, respectively.
Member of