Kim, Myeongsub

Person Preferred Name
Kim, Myeongsub
Model
Digital Document
Publisher
Florida Atlantic University
Description
Due to technological advancement, energy consumption and demand have been increasing significantly, primarily satisfied by fossil fuel utilization. The dependence on fossil fuels results in substantial greenhouse gas emissions, with CO₂ being the principal factor in global warming. Carbon capture technologies are employed to mitigate the escalated CO₂ emissions into the atmosphere. Among various carbon capture methods, amine scrubbing is widely utilized because of its high CO2 capture efficiency and ease of adaptability to the existing power plants. This method, however, presents drawbacks, including increased toxicity, corrosiveness, and substantial freshwater use. To overcome these shortcomings and simultaneously develop an environmentally sustainable carbon capture solution, this study aims to evaluate the CO2 capture performance of seawater associated with polyvinylpyrrolidone (PVP) polymer-coated nickel nanoparticles (NiNPs) catalysts. Using high-speed bubble-based microfluidics, we investigated time-dependent size variations of CO2 bubbles in a flow-focusing microchannel, which is directly related to transient CO₂ dissolution into the surrounding solution. We hypothesize that the higher surface-to-volume ratio of polymer-coated NiNPs could provide a higher CO2 capture rate and solubility under the same environmental conditions. To test this hypothesis and to find the maximum performance of carbon capture, we synthesized polymer-coated NiNPs with different sizes of 5 nm, 10 nm, and 20 nm. The results showed that 5 nm polymer-coated NiNPs attained a CO₂ dissolution rate of 77% while it is 71% and 43% at 10 nm and 20 nm NPs, respectively. This indicates that our hypothesis is proven to be valid, suggesting that the smaller NPs catalyze CO2 capture effectively with using the same amount of material, which could be a game changer for future CO2 reduction technologies. This unique strategy promotes the future improvement of NiNPs as catalysts for CO2 capture from saltwater.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Over the past decade, hydrogen gas generation has been a critical component toward clean energy due to its high specific energy content. Generating hydrogen gas from water is crucial for future applications, including space transportation. Recent studies show promising results using silicon nanoparticles (SiNPs) for spontaneous hydrogen generation, but most methods require external energy like high temperature or pressure. In this work, we investigated hydrogen production from SiNPs without external energy by leveraging high pH water using sodium hydroxide and optimizing the process with a microfluidic approach. When comparing the physical dispersion methods using the 0.1 mg/mL case, ultrasonic bath produced more hydrogen than magnetic stirrer. In this thesis, 0.01% dextran with pure SiNPs at concentrations of 0.1 mg/mL, 0.2 mg/mL, and 0.3 mg/mL was analyzed. The highest concentration with dextran generated at least 40% less hydrogen than silicon alone, thus dextran did not increase hydrogen gas.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Due to technological advancement, energy consumption and demand have been increasing significantly, primarily satisfied by fossil fuel consumption. This reliance on fossil fuels results in substantial greenhouse gas emissions, with CO₂ being the most prominent contributor to global warming. To mitigate this issue and prevent CO₂ emissions, Carbon Capture, Utilization, and Storage (CCUS) technologies are employed. Among these, the amine scrubbing method is widely used due to its high CO2 capture efficiency and regenerative ability. However, this method has drawbacks, including high toxicity, corrosion, and substantial freshwater consumption.
To develop an environmentally sustainable carbon capture solution, researchers are exploring alternatives such as the use of seawater and enhanced CO2 capture with catalysts. In this study, we analyze the catalytic performance of nickel nanoparticles (NiNPs) in seawater with carboxymethyl cellulose (CMC) polymers. Using flow-focusing geometry-based microfluidic channels, we investigated CO₂ dissolution at various concentrations of nanoparticles and CMC polymers. The objective is to optimize the concentration of nanoparticles and CMC polymers for effective CO₂ dissolution. We utilized NiNPs with diameters of 100 nm and 300 nm in CMC concentrations of 100 ml/L, 200 ml/L, and 300 ml/L. Additionally, NiNP concentrations ranging from 6 mg/L to 150 mg/L were tested for CO₂ dissolution in seawater. The results indicated that a concentration of 10 mg/L NiNPs in 100 mg/L CMC provided a CO₂ dissolution of 57%, the highest for this specific CMC concentration. At CMC concentrations of 200 ml/L and 300 ml/L, NiNP concentrations of 70 mg/L and 90 mg/L achieved CO₂ dissolution rates of 58.8% and 67.2%, respectively.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Boiling heat transfer associated with bubble growth is perhaps one of the most efficient cooling methodologies due to its sizeable latent heat during phase change. Despite significant advancement, numerous questions remain regarding the fundamentals of bubble growth mechanisms, a primary source of enhanced heat dissipation. This thesis provides a comprehensive examination of the mechanisms involved in the growth of bubbles during nucleate boiling. By conducting a combination of experiments and numerical analyses, the goal is to enhance our understanding of bubble growth phenomena and their impact on heat transfer. Initially, the experimental work focuses on comparing the heat transfer performance and parameters related to bubble dynamics between regular and modified fin structures. The findings demonstrate that the modified fin structure, which featured artificial nucleation sites, exhibits superior heat transfer characteristics. This improvement is attributed to changes in the bubble departure diameter, bubble departure frequency, and growth time. Subsequently, an artificial neural network is developed to accurately predict the bubble departure diameter based on the wall superheat and subcooling level. This predictive model provides valuable insights into bubble behavior originating from artificial nucleation sites.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The elevated energy demand and high dependency on fossil fuels have directed researchers’ attention to promoting and advancing hydraulic fracturing (HF) operations for a sustainable energy future. Previous studies have demonstrated that the particle suspension and positioning in slick water play a vital role during the injection and shut-in stages of the HF operations. A significant challenge to HF is the premature particle settling and uneven particle distribution in a formation. Even though various research was conducted on the topic of particle transport, there still exist gaps in the fundamental particle-particle interaction mechanisms. This dissertation utilizes both experimental and numerical approaches to advance the state of the art in particle-particle interactions in various test conditions. Experimentally, the study utilizes high-speed imaging coupled with particle tracking velocimetry (PTV) and particle image velocimetry (PIV) to provide a space and time-resolved investigation of both two-particle and multi-particle interactions during gravitational settling, respectively.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Among various sources for biofuels, microalgae provide at least three-orders-of-magnitude higher production rate of biodiesel at a given land area than conventional crop-based methods. However, microalgal biodiesel still suffers from significantly lower harvesting efficiency, making such a fuel less competitive. To increase the separation efficiency of microalgae from cultivation solution, an orbital microchannel was utilized that enabled the isolation of biofuel-algae particles from the effluent. The results obtained showed that the separation efficiency in the microfluidic centrifugal separator can be as high as 76% within a quick separation time of 30 seconds. Multiple parameters of algae behaviors and separation techniques such as initial concentration, pH and temperature were studied and manipulated to achieve better efficiencies. It was found that changing these factors altered the separation efficiency by increasing or decreasing flocculation, or “clumping” of the microalgae within the microchannels. The results suggested that an acidic condition would enhance the separation efficiency since in a basic environment, large flocs of microalgae would block and hinder the separation process. Furthermore, a hot temperature solution (around 33 °C) yielded to a higher separation efficiency. The important characteristics of the separator geometry and the infusion rate on algae separation were also very effective in the separation process. This study revealed that there is an opportunity to improve the currently low efficiency of algae separation in centrifugal systems using much smaller designs in size, ensuring a much more efficient algae harvesting.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Droplet microfluidics generates and manipulates microdroplets in microfluidic devices at high manufacturing efficiency and controllability. Microdroplets have proven effective in biomedical applications such as single-cell analysis, DNA sequencing, protein partitioning and drug delivery. Conventionally, a series of aqueous microdroplets containing biosamples is generated and controlled in an oil environment. One of the critical challenges in this system is that recovery of the aqueous samples from the oil phase is very difficult and often requires expensive and cumbersome post-processing. Also, the low Reynolds (Re) number characteristic of this system results in low throughput of droplet generation. To circumvent challenges and fully utilize microdroplets for practical clinical applications, this research aims to unpack the fundamental physics that governs droplet generation in oil-free systems including an aqueous two-phase system (ATPS) and a high inertial liquid-gas system.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Hydraulic fracturing (hydrofracking) has enabled recovery of natural gas and oil embedded in low permeability reservoirs. Despite its advancement in significant recovery of hydrocarbons not previously accessible from low permeability reservoirs, understanding the particle interactions and injected fluid retraction is lacking. The goal of this project is to investigate fluid dynamics of the fracking fluid (particle-laden flow) under instant fluid injection and withdrawal. We will use a microfluidic-based approach in order to visualize a fluid displacement as well as particle-particle interactions in a micromodel that mimics the flow in actual reservoirs. Nanoporous spherical silica particles in diameter of 0.1 mm are going to be utilized in this project. A high-speed visualization tool will characterize the dynamic and complex nature of particle transportation, deposition and their interactions under dynamic flow conditions. In addition, the role of surface properties on these behaviors will be tested.