Lee, Zachary

Relationships
Member of: Graduate College
Person Preferred Name
Lee, Zachary
Model
Digital Document
Publisher
Florida Atlantic University
Description
The kynurenine pathway plays a critical role in regulating immunological homeostasis in the brain. Evidence supporting the hypothesis that kynurenine pathway dysfunction may exacerbate progression of neurodegenerative diseases like Parkinson’s is growing. First, we investigate the effects of Interferon-γ, Lipopolysaccharide, and Interleukin-4 on several key kynurenine pathway metabolites using high performance liquid chromatography. We found that Interferon-γ had significant effects on the extracellular concentration of kynurenine metabolites in astrocytes, microglia, and macrophage. GCSF gene therapy is previously demonstrated to exert neuroprotective effects on models of Parkinson’s and Alzheimer’s disease. Seven days after receiving GCSF gene therapy, A53T Parkinson’s mice were found to have increased levels of GCSF and tyrosine hydroxylase positive neurons. A concurrent increase in expression of the kynurenine pathway enzyme kynurenine aminotransferase 2 was observed. GCSF gene therapy may exhibit neuroprotective effects in a Parkinson’s disease mouse model by restoring this key kynurenine pathway enzyme.