Engle, Jonathan

Person Preferred Name
Engle, Jonathan
Model
Digital Document
Publisher
Florida Atlantic University
Description
1In this dissertation we work out in detail a new proposal to define rigorously a sector of loop quantum gravity at the diffeomorphism invariant level corresponding to homogeneous and isotropic cosmologies, and propose how to compare in detail the physics of this sector with that of loop quantum cosmology. The key technical steps we have completed are (a) to formulate conditions for homogeneity and isotropy in a diffeomorphism covariant way on the classical phase space of general relativity, and (b) to translate these conditions consistently using well-understood techniques to loop quantum gravity. To impose the symmetry at the quantum level, on both the connection and its conjugate momentum, the method used necessarily has similiarities to the Gupta-Bleuler method of quantizing the electromagnetic field. Lastly, a strategy for embedding states of loop quantum cosmology into this new homogeneous isotropic sector, and using this embedding to compare the physics, is presented.
Model
Digital Document
Publisher
Florida Atlantic University
Description
In this dissertation we study the dynamics of loop quantum gravity and its applications. We propose a tunneling phenomenon of a black hole-white hole transition and derive an amplitude for such transition using the spinfoam framework. We investigate a special class of kinematical states for loop quantum gravity - Bell spin networks - and show that their entanglement entropy obeys the area law. We develop a new spinfoam vertex amplitude that has the correct semi-classical limit. We then apply this new amplitude to calculate the graviton propagator and a cosmological transition amplitude. The results of these calculations show feasibility of computations with the new amplitude and its viability as a spinfoam model. Finally, we use physical principles to radically constrain ambiguities in the cosmological dynamics and derive unique Hamiltonian dynamics for Friedmann-Robertson-Walker and Bianchi I cosmologies.