Model
Digital Document
Publisher
Florida Atlantic University
Description
The Transmission Control Protocol (TCP) is one of the core protocols of the Internet protocol suite. In the wired network, TCP performs remarkably well due to its scalability and distributed end-to-end congestion control algorithms. However, many studies have shown that the unmodified standard TCP performs poorly in networks with large bandwidth-delay products and/or lossy wireless links. In this thesis, we analyze the problems TCP exhibits in the wireless communication and develop TCP congestion control algorithm for mobile applications. We show that the optimal TCP congestion control and link scheduling scheme amounts to window-control oriented implicit primaldual solvers for underlying network utility maximization. Based on this idea, we used a scalable congestion control algorithm called QUeueIng-Control (QUIC) TCP where it utilizes queueing-delay based MaxWeight-type scheduler for wireless links developed in [34]. Simulation and test results are provided to evaluate the proposed schemes in practical networks.
Member of