Model
Digital Document
Publisher
Florida Atlantic University
Description
Marine pipeline cathodic protection systems for asymmetrical situation were systematically investigated by means of a newly proposed approach and Boundary Element Method (BEM). Potential attenuation profiles from BEM modeling indicate that far-field cathode potentials of different pipe sections approach identical values under different coating resistance and different electrolyte resistivity conditions provided anodes are separated by at least 10m and metallic resistance is negligible. A series of equations based on the Slope Parameter Method (SPM) has been modified for more extensive applicability. Several design examples have been analyzed and the results verified by BEM. Cathode potential and current demands projected by the new method are consistent with those of BEM. The inclusive equation for even anode spacing CP has been modified to include the cable parameters by combining cable resistance and the anode resistance. Current demand for existing pipelines can be determined by either of two methods. The first utilizes the inclusive equation and involves solving this for current demand based upon a known potential profile. The other is based on SPM.
Member of