Invariants

Model
Digital Document
Publisher
Florida Atlantic University
Description
The goal of this work is to study smooth invariant sets using high order approximation schemes. Whenever possible, existence of invariant sets are established using computer-assisted proofs. This provides a new set of tools for mathematically rigorous analysis of the invariant objects. The dissertation focuses on application of these tools to a family of three dimensional dissipative vector fields, derived from the normal form of a cusp-Hopf bifurcation. The vector field displays a Neimark-Sacker bifurcation giving rise to an attracting invariant torus. We examine the torus via parameter continuation from its appearance to its breakdown, scrutinizing its dynamics between these events. We also study the embeddings of the stable/unstable manifolds of the hyperbolic equilibrium solutions over this parameter range. We focus on the role of the invariant manifolds as transport barriers and their participation in global bifurcations. We then study the existence and regularity properties for attracting invariant tori in three dimensional dissipative systems of ordinary differential equations and lay out a constructive method of computer assisted proof which pertains to explicit problems in non-perturbative regimes. We get verifiable lower bounds on the regularity of the attractor in terms of the ratio of the expansion rate on the torus with the contraction rate near the torus. We look at two important cases of rotational and resonant tori. Finally, we study the related problem of approximating two dimensional subcenter manifolds of conservative systems. As an application, we compare two methods for computing the Taylor series expansion of the graph of the subcenter manifold near a saddle-center equilibrium solution of a Hamiltonian system.
Model
Digital Document
Publisher
Florida Atlantic University
Description
1In this dissertation we work out in detail a new proposal to define rigorously a sector of loop quantum gravity at the diffeomorphism invariant level corresponding to homogeneous and isotropic cosmologies, and propose how to compare in detail the physics of this sector with that of loop quantum cosmology. The key technical steps we have completed are (a) to formulate conditions for homogeneity and isotropy in a diffeomorphism covariant way on the classical phase space of general relativity, and (b) to translate these conditions consistently using well-understood techniques to loop quantum gravity. To impose the symmetry at the quantum level, on both the connection and its conjugate momentum, the method used necessarily has similiarities to the Gupta-Bleuler method of quantizing the electromagnetic field. Lastly, a strategy for embedding states of loop quantum cosmology into this new homogeneous isotropic sector, and using this embedding to compare the physics, is presented.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis studies the 2-D-based visual invariant that exists during relative motion between a camera and a 3-D object. We show that during fixation there is a measurable nonlinear function of optical flow that produces the same value for all points of a stationary environment regardless of the 3-D shape of the environment. During fixated camera motion relative to a rigid object, e.g., a stationary environment, the projection of the fixated point remains (by definition) at the same location in the image, and all other points located on the 3-D rigid object can only rotate relative to that 3-D fixation point. This rotation rate of the points is invariant for all points that lie on the particular environment, and it is measurable from a sequence of images. This new invariant is obtained from a set of monocular images and is expressed explicitly as a closed form solution.