Model
Digital Document
Publisher
Florida Atlantic University
Description
Access to affordable healthcare is a nationwide concern that impacts most of the United States population. Medicare is a federal government healthcare program that aims to provide affordable health insurance to the elderly population and individuals with select disabilities. Unfortunately, there is a significant amount of fraud, waste, and abuse within the Medicare system that inevitably raises premiums and costs taxpayers billions of dollars each year. Dedicated task forces investigate the most severe fraudulent cases, but with millions of healthcare providers and more than 60 million active Medicare beneficiaries, manual fraud detection efforts are not able to make widespread, meaningful impact. Through the proliferation of electronic health records and continuous breakthroughs in data mining and machine learning, there is a great opportunity to develop and leverage advanced machine learning systems for automating healthcare fraud detection.
This dissertation identifies key challenges associated with predictive modeling for large-scale Medicare fraud detection and presents innovative solutions to address these challenges in order to provide state-of-the-art results on multiple real-world Medicare fraud data sets. Our methodology for curating nine distinct Medicare fraud classification data sets is presented with comprehensive details describing data accumulation, data pre-processing, data aggregation techniques, data enrichment strategies, and improved fraud labeling. Data-level and algorithm-level methods for treating severe class imbalance, including a flexible output thresholding method and a cost-sensitive framework, are evaluated using deep neural network and ensemble learners. Novel encoding techniques and representation learning methods for high-dimensional categorical features are proposed to create expressive representations of provider attributes and billing procedure codes.
This dissertation identifies key challenges associated with predictive modeling for large-scale Medicare fraud detection and presents innovative solutions to address these challenges in order to provide state-of-the-art results on multiple real-world Medicare fraud data sets. Our methodology for curating nine distinct Medicare fraud classification data sets is presented with comprehensive details describing data accumulation, data pre-processing, data aggregation techniques, data enrichment strategies, and improved fraud labeling. Data-level and algorithm-level methods for treating severe class imbalance, including a flexible output thresholding method and a cost-sensitive framework, are evaluated using deep neural network and ensemble learners. Novel encoding techniques and representation learning methods for high-dimensional categorical features are proposed to create expressive representations of provider attributes and billing procedure codes.
Member of