Gold, Dominic

Relationships
Member of: Graduate College
Person Preferred Name
Gold, Dominic
Model
Digital Document
Publisher
Florida Atlantic University
Description
Computational tools grounded in algebraic topology, known collectively as topological data analysis (TDA), have been used for dimensionality-reduction to preserve salient and discriminating features in data. This faithful but compressed representation of data through TDA’s flagship method, persistent homology (PH), motivates its use to address the complexity, depth, and inefficiency issues present in privacy-preserving, homomorphic encryption (HE)-based machine learning (ML) models, which permit a data provider (often referred to as the Client) to outsource computational tasks on their encrypted data to a computationally-superior but semi-honest party (the Server). This work introduces efforts to adapt the well-established TDA-ML pipeline on encrypted data to realize the benefits TDA can provide to HE’s computational limitations as well as provide HE’s provable security on the sensitive data domains in which TDA has found success in (e.g., sequence, gene expression, imaging). The privacy-protecting technologies which could emerge from this foundational work will lead to direct improvements to the accessibility and equitability of health care systems. ML promises to reduce biases and improve accuracies of diagnoses, and enabling such models to act on sensitive biomedical data without exposing it will improve trustworthiness of these systems.